Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1
= 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1
Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999
Khi đó : f(1999) = 19992015 - 2000C - 1
Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999
=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992
Lấy 1999C cộng C theo vế ta có :
1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)
2000C = 19992015 - 2000.1999
=> f(1999) = 19992015 - 19992015 + 2000.1999 - 1 = 2000.1999 + 1
Ta có: x=1999
nên x+1=2020
Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)
\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)
\(=x-1\)
\(=1999-1=1998\)
f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1
⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1
⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999
⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)
⇒ 2000. f(1999) = 19992−1
⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
Ta có: C= |2000x+2016|+|2000x-2017|
=> C = |2000x+2016+2000x-2017|
= 4000x-1 <= -1
Dấu "=" xảy ra khi 4000x=0 => x=0
Vậy Cmax=-1 khi x=0
Không chắc. Chúc bạn học giỏi!
C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|
Áp dụng : |A|+|B|>=|A+B|
dấu "=" xảy ra <=>A.B=0 ta có
C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033
dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0
<=>2000x+2016=0=>2000x=-2016=>x=1.008
hoặc 2017-2000x=0=>x=2017:2000=1,0085
vaayjMaxC=4033<=>x=.......
Do x=1999 nên 2000 = x+1 ; Thay vào biểu thức ta có:
\(E=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-.........-\left(x+1\right)x+2000\)
\(=>E=x^8-x^8-x^7+x^7+x^6-........-x^2-x+2000\)
\(=>E=-x+2000\)
\(=>E=-1999+2000=1\)
Vậy giá trị của E là 1 tại x=1999;
CHÚC BẠN HỌC TỐT........