Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A,B kẻ đường cao AH,BK (H∈CD, K∈CD)
AB//HK=>ABKH là hình bình hành.
AH⊥DC=>ABKH là hình chữ nhật
=>HK=AB=10
ΔAHD= ΔBKC(ch-gn)
=>DH=HC=(DC-HK)//2=7
ΔKCB vuông tại K =>BC^2=BK^2+KC^2
=>BK=24
Gọi giao điểm của CD và chiều cao của nó là E.
\(DE=\frac{24-10}{2}=7\)
Áp dụng định lý Py- ta-go vào tam giác ADE, ta được
\(AD=\sqrt{25^2-7^2}=\sqrt{576}=24\)
Vậy chiều cao của hình thang ABCD là 24cm
kẻ AE vuông góc vs DC, BF vuông góc vsDC
xét tg AED và tg BFC cò
AED =BFC=90
AD=BC ,ADE= BCF (vì tg ABCD là hthang cân)
=> tg AED =tg BFC (ch-gn)
=>DE=CF (1)
xét tg ABFE có: 3 góc vuông (tự c/m) =>tg ABFE là hcn =>AB=EF=10 cm,
ta có :DE +EF +FC =DC=24
mà EF=10cm,DE =CF => 2DE =24-10=14 =>DE=7cm
xét tg ADE vuông tại D có: AE^2 +DE^2 =AD^2
=>AE^2 +7^2 =25^2 =>AE=24cm
vậy chiều cao của hthang ABCD là 24cm
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
Tính chiều cao của hình thang cân ABCD, biết rằng cạnh bên AD = 5cm, cạnh đáy AB = 6cm và CD = 14cm.
Kẻ AH ⊥ CD, BK ⊥ CD thì AH//BK nên hình thang ABKH có hai cạnh bên song song.
Áp dụng tính chất của hình thang ABKH có hai cạnh bên song song, ta có:
Áp dụng định lí Py – ta – go vào tam giác ADH vuông tại H ta được:
Vậy chiều cao của hình thang cân là 3cm.