Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(A=\frac{1}{2}\left[\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+...+\frac{2}{73\cdot75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{75}\right]=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(b,B=\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+...+\frac{1}{197\cdot200}\)
\(3B=\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{197\cdot200}\)
\(3B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\)
\(3B=\frac{1}{8}-\frac{1}{200}\)
\(3B=\frac{3}{25}\)
\(B=\frac{3}{25}:3=\frac{1}{25}\)
#)Giải :
a, \(A=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)
\(A=\frac{1}{25}-\frac{1}{75}\)
\(A=\frac{2}{75}\)
b, \(B=\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\)
\(B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\)
\(B=\frac{1}{8}-\frac{1}{200}\)
\(B=\frac{3}{25}\)
#~Will~be~Pens~#
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
Ta có: \(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+4}{2011}+\frac{x+5}{2010}+\frac{x+6}{2009}\)
\(\Rightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1=\frac{x+4}{2011}+1+\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)
\(\Rightarrow\frac{2015+x}{2014}+\frac{2015+x}{2013}+\frac{2015+x}{2012}=\frac{2015+x}{2011}+\frac{2015+x}{2010}+\frac{2015+x}{2009}\)
\(\Rightarrow\left(2015+x\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
=> 2015 + x = 0
=> x = -2015
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
\(\left(1+\frac{1}{4}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right).\left(1+\frac{1}{24}\right)...\left(1+\frac{1}{9999}\right)\)
\(=\frac{5}{4}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{10000}{9999}=\frac{5.9.16.25...10000}{4.8.15.24...9999}=\frac{5.3^2.4^2.5^2...100^2}{4.2.4.3.5.4.6...99.101}\)
\(=\frac{5.3.4.5...100.3.4.5...100}{4.2.3.4...99.4.5.6...101}=\frac{5.100.3}{4.2.101}=\frac{5.25.3}{2.101}=\frac{375}{202}.\)