Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b)(a + b)2 = (a + b)(a2 + 2ab + b2 )
= a(a2 + 2ab + b2 ) + b(a2 + 2ab + b2 )
= a3 + 2a2 b + ab2 + ba2 + 2ab2 + b3
= a3 + 3a2 b + 3ab2 + b3
(a - b)(a2 + ab + b2 ) = a(a2 + ab + b2 ) - b(a2 + ab + b2 )
= a3 + a2 b + ab2 - ba2 - ab2 - b3
= a3 - b3
(a + b)(a2 – ab + b2 ) = a(a2 – ab + b2 ) + b(a2 – ab + b2 )
= a3 – a2b + ab2 + ba2 – ab2 + b3
= a3 + b3
Áp dụng hằng đẳng thức (1) ta có:
[a + (-b)]2 = a2 + 2.a.(-b) + (-b)2 = a2 - 2ab + b2
(a + b)(a – b) = a(a – b) + b(a – b)
= a2 - ab + ba - b2
= a2 - b2
2) (2x - 3y)2
= (2x)2 - 2.2x.3y + ( 3y)2
= 4x2 - 12xy + 9y2
t i c k nhé!!!! 4645757878769698700795783537742637645756756756765
1) giả sử a = 3x ; b = 5y ta có:
[3x + (-2y)]2
= (3x)2 + 2.3x.(-2y) + (-2y)2
= 9x2 - 12xy + 4y2
= (3x - 2y)2
2) (2x - 3y)2
= (2x)2 - 2.2x.3y + (3y)2
= 4x2 - 12xy + 9y2
t i c k nha!!!!! 576767868658769769765474745735733462464575687687685789587
a4+b4 -a3b-b3a >_ 0
a3.(a-b) + b3.(b-a) >_ 0
a3.(a+b)-b3 (a-b) >_0 ( đổi dấu )
(a-b)(a3- b3)>_0
(a-b)(a-b)(a2+ab+b2) >_0 (1)
(a-b)2(a2+ab+b2) >_0 ta có a2+ab+b2 = a2+ab+1/4b2 +3/4b2 = (a+1/2b)2+3/4b2 lớn hơn hoặc =0
mà (a-b)2 luôn >_ 0 nên (1) lớn hơn hoặc=0
suy ra điều phải chứng minh. dấu = xảy ra khi a=b=0
Xét hiệu: a4 + b4 - ( a3b + b3a)
= (a4 -a3b) - ( b3a- b4) = a3(a-b) - b3(a-b) = (a-b)(a3 - b3) = (a-b)2(a2 + ab + b2)
= (a-b)2((a + b/2)2 + 3b2/4) \(\ge0\) với mọi a; b.
Vậy a4 + b4 - ( a3b + b3a) \(\ge0\)Hay a4 + b4 \(\ge\) a3b + b3a (ĐPCM)
Gọi một số là \(x\) thì số kia là \(2x\)
Hiệu của hai số bằng 22 nên ta có phương trình :
\(x-2x=22\)
hoặc:
\(2x-x=22\)
Đáp số :
a) Hai số là 22 và 44
b) Hai số là 22 và 44 hoặc -22 và -44
Áp dụng hằng đẳng thức (4) ta có:
[a + (-b)]3 = a3 + 3a2 (-b) + 3a(-b)2 + (-b)3
= a3 - 3a2b + 3ab2 - b3