Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\right)\)
\(=5\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)\)
\(=5\cdot\dfrac{5}{24}=\dfrac{25}{24}\)
`5/12 + 5/20 + 5/30 + 5/42 + 5/56`
`= 5/(3.4) + 5/(4.5) + 5/(5.6) + 5/(6.7) + 5/(7.8)`
`= 5 . (1/(3.4) + 1/(4.5) + ... + 5/(7.8))`
`= 5 . (1/3 - 1/4 + 1/4 - 1/5 + ...+ 1/7 - 1/8)`
`= 5 . (1/3 - 1/8) `
`= 5 . 5/24 = 25/24`
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
\(-\dfrac{5}{7}\times\dfrac{2}{13}+\dfrac{-5}{7}\times\dfrac{3}{13}-\dfrac{5}{7}\times\dfrac{8}{13}\)
\(=-\dfrac{5}{7}\left(\dfrac{2}{13}+\dfrac{3}{13}+\dfrac{8}{13}\right)\)
\(=-\dfrac{5}{7}\times\dfrac{13}{13}\)
\(=-\dfrac{5}{7}\times1=-\dfrac{5}{7}\)
`6/7 . 8/13 +6/7 . 9/13+3/13 . 6/7`
`=6/7 . (8/13+9/13+3/13)`
`=6/7 . 20/13`
`=120/91`
\(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{7}.\dfrac{9}{13}+\dfrac{3}{13}.\dfrac{6}{7}\)
\(=\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{9}{13}+\dfrac{3}{13}\right)\)
\(=\dfrac{6}{7}.\left(\dfrac{8+9+3}{13}\right)\)
\(=\dfrac{6}{7}.\dfrac{20}{13}\)
\(=\dfrac{6.20}{7.13}\)
\(=\dfrac{120}{91}\)
\(=\dfrac{1}{3}:\dfrac{7\cdot\left(5+3\right)}{18\cdot\left(53-11\right)}\)
\(=\dfrac{1}{3}:\dfrac{7\cdot8}{18\cdot42}\)
\(=\dfrac{1}{3}:\dfrac{7\cdot2\cdot2\cdot2}{3\cdot3\cdot2\cdot2\cdot3\cdot7}\)
\(=\dfrac{1}{3}:\dfrac{2}{3\cdot3\cdot3}\)
\(=\dfrac{1}{3}\cdot\dfrac{27}{2}\)
\(=\dfrac{9}{2}\)
\(-\dfrac{3}{7}\times\dfrac{15}{13}-\dfrac{3}{7}\times\dfrac{11}{13}-\dfrac{3}{7}\)
\(=-\dfrac{3}{7}\left(\dfrac{15}{13}+\dfrac{11}{13}+1\right)\)
\(=-\dfrac{3}{7}\left(\dfrac{15}{13}+\dfrac{11}{13}+\dfrac{13}{13}\right)\)
\(=-\dfrac{3}{7}\times\dfrac{39}{13}=-\dfrac{3}{7}\times3=-\dfrac{9}{7}\)
`S_1 = 5/(1.4) + 5/(4.7) +...+ 5/(97.100)`
`S_1 = 5 (1/(1.4) + 1/(4.7) +...+ 1/(97.100))`
`S_1 = 5/3 (3/(1.4) + 3/(4.7) +...+ 3/(97.100))`
`S_1 = 5/3 (1 - 1/4 + 1/4 - 1/7 + ...+ 1/97 - 1/100)`
`S_1 = 5/3 (1 - 1/100)`
`S_1 = 5/3 . 99/100`
`S_1 = 33/20`
\(\left(-12\right).65+7.12-8.\left(-12\right)\)
\(=-12\left(65-7-8\right)\)
\(=-12.50\)
\(=-600\)