K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

Áp dụng ...............ta có :

x/z+y+1=y/x+z+1=z/x+y-2=1/2

+,x/z+y+1=1/2=>2x=z+y+1

                      =>2x-1=z+y

lại có x+y+z=1/2(1)=>x+2x-1=1/2

                             =>3x=1/2+1=3/2

                             =>x=3/2 /3=1/2

+,y/x+z+1=1/2=>2y=x+z+1

                      =>2y-1=x+z

 Từ 1    =>2y-1+y=x+y+z

            =>3y=1/2+1=3/2

           =>y=3/2 /2 = 1/2

Thãy=1/2;y=1/2 vào 1 ta có :

1/2+1/2+z=1/2

z=1/2-1/2-1/2=-1/2

4 tháng 1 2016

vận dụng dãy tỉ số bằng nhau pp ăn cơm

24 tháng 10 2017

mk ko bt 123

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

8 tháng 12 2016

8:50 gửi--> 9:30 đi  

=> bạn phải nhắn tin may ra có kết quả mong đợi

30 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)

Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.

30 tháng 10 2017

Kết quả bằng 6 nha 

k tui nha

Thanks

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai