K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)

Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)

Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)

4 tháng 4 2022

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

22 tháng 10 2023

|x - 2| + |y - 1| + (x - y - z)²⁰²² = 0 (1)

Do |x - 2| ≥ 0 với mọi x ∈ R

|y - 1| ≥ 0 với mọi x ∈ R

(x - y - z)²⁰²² ≥ 0 với mọi x ∈ R

(1) ⇒  |x - 2| = |y - 1| = (x - y - z)²⁰²² = 0

*) |x - 2| = 0

x - 2 = 0

x = 2

*) |y - 1| = 0

y - 1 = 0

y = 1

*) (x - y - z)²⁰²² = 0

x - y - z = 0

2 - 1 - z = 0

1 - z = 0

z = 1

⇒ C = 26x - 3y²⁰²² + z²⁰²³

= 26.2 - 3.1²⁰²² + 1²⁰²³

= 52 - 3 + 1

= 50

6 tháng 11 2021

B

17 tháng 12 2022

=>2x-1=0 và x+2y=0

=>x=1/2 và y=-x/2=-1/4

24 tháng 10 2020

Ta thấy: \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\\\left(y-z\right)^{2022}\ge0\\\left|x-y-z\right|\ge0\end{cases}\left(\forall x,y,z\right)}\)

\(\Rightarrow\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-3\right)^{2020}=0\\\left(y-z\right)^{2022}=0\\\left|x-y-z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=z\\y+z=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=z=\frac{3}{2}\end{cases}}\)

Vậy x = 3 và y = z = 3/2

24 tháng 10 2020

Ta có : \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\forall x\\\left(y-z\right)^{2022}\ge0\forall y;z\\\left|x-y-z\right|\ge0\forall x;y;z\end{cases}\Rightarrow}\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-3=0\\y-z=0\\x-y-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=z\\x=y+z\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=1,5\\z=1,5\end{cases}}\)

Vậy x = 3 ; y = 1,5 ; z = 1,5 là giá trị cần tìm