Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
Vì (x-3)^2 >=0 và (y+5)^2>=0 nên suy ra:
x-3=0 và y+5=0
=> x=3 và y=-5
B2:
ab=6 => abc=6c
bc=12=>abc=12a
ac=8=>abc=8b
=>6c=12a=8b
=>c=2a
=>ac=2a^2=8
=>a^2=4
=>a=2 hoặc a=-2
Với a=2 suy ra b=3 và c=4
Với a=-2 suy ra b=-3 và c=-4
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
Ta có : (2x+1).(y-5)=12
Vì 2x+1 và y-5 là số nguyên nên 2x+1, y-5 thuộc Ư(12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Mà 2x+1 là số lẻ, ta có bảng sau :
2x+1 | -3 | 3 | -1 | 1 |
x | -2 | 1 | -1 | 0 |
y-5 | -4 | 4 | -12 | 12 |
y | 1 | 9 | -7 | 17 |
=> x=1/3 hoặc y=1/5 hoặc z=-1/4 (một trong 3 tích này bằng 0)
x+y=y-1 nên x=y-1-y = -1
Lại có: y-1 = z+1 nên y>x
+ Nếu y = 1/5 thì 1/5-1 = z+1 => -4/5 = z+1 => z = -4/5-1 = -9/5
Thử lại: -1+1/5 = -4/5 = -9/5 + 1
Vậy ta có cặp x,y,z lần lượt là -1;1/5;-9/5
+ Nếu z = -1/4 thì y-1 = -1/4+1 => y-1 = 3/4 => y = 3/4+1 = 7/4
Vậy ta có cặp x,y,z tiếp theo là x=-1 ; y=7/4 ; z=-1/4