Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta thấy: \(\begin{cases}\left|x-2016y\right|\ge0\\\left|x-2012\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-2016y\right|+\left|x-2012\right|\ge0\)(1)
Mà \(\left|x-2016y\right|+\left|x-2012\right|\le0\)(2)
Từ (1) và (2) suy ra \(\left|x-2016y\right|+\left|x-2012\right|=0\)
\(\Rightarrow\begin{cases}\left|x-2012\right|=0\\\left|x-2016y\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-2012=0\left(1\right)\\x-2016y=0\left(2\right)\end{cases}\)
\(\left(1\right)\Rightarrow x=2012\).Thay vào (2) ta có:
\(2012-2016y=0\)\(\Rightarrow2016y=2012\)\(\Rightarrow y=\frac{503}{504}\)(loại vì \(x,y\in Z\))
Vậy không tồn tại giá trị nào thỏa mãn
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1