Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y,z thuộc Q biết :
a)x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35
b)(c+2) mũ 2+(y-3) mũ 4 +(z-5) mũ 6 =0
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
b) Có x+y+z=0 => \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
=> B = \(-xyz\) = -2
a) Có x + y + 1 =0 => x + y = -1
\(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
= \(\left(x+y\right)\left(x^2-y^2\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
= \(\left(x+y\right)^2\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
Thay x + y = -1, ta có:
A = x - y - x + y - 2 + 3
= 1
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{22}{6}=\frac{11}{3}\)
\(\Rightarrow x^2=\frac{44}{3}\Rightarrow x=\frac{2\sqrt{11}}{\sqrt{3}}=\frac{2\sqrt{33}}{3}\)
\(\Rightarrow y^2=\frac{99}{3}=33\Rightarrow y=\sqrt{33}\)
\(\Rightarrow z^2=\frac{275}{3}\Rightarrow z=\frac{5\sqrt{33}}{3}\)
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).