\(x^2+2xy+2y^2-3y-4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

7 tháng 5 2015

biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy

(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)

\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)

Ta có: \(\left(x+y+1\right)^2\ge o\)

Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)

Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)

Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài

Kết quả: x=0; y=-1

18 tháng 6 2017

từ pt thứ nhất ta có x + y = 2xy.

đặt xy = t.

pt thứ 2: 2t - t2 = \(\sqrt{\left(t-1\right)^2+1}\) hay \(1-\left(t-1\right)^2=\sqrt{\left(t-1\right)^2+1}\)

đặt a = (t - 1)2.

pt: 1 - a = \(\sqrt{a+1}\) hay a2 -2a + 1 = a + 1 (đk: a \(\le\) 1).

hay a2 - 3a = 0 hay a = 3 (loại) hoặc a = 0.

với a = 0 thì t = 1 hay xy = 1 và x + y = 2.

x, y là nghiệm pt: z2 - 2z + 1 = 0 hay z = 1 hay x= y = 1.