Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
từ pt thứ nhất ta có x + y = 2xy.
đặt xy = t.
pt thứ 2: 2t - t2 = \(\sqrt{\left(t-1\right)^2+1}\) hay \(1-\left(t-1\right)^2=\sqrt{\left(t-1\right)^2+1}\)
đặt a = (t - 1)2.
pt: 1 - a = \(\sqrt{a+1}\) hay a2 -2a + 1 = a + 1 (đk: a \(\le\) 1).
hay a2 - 3a = 0 hay a = 3 (loại) hoặc a = 0.
với a = 0 thì t = 1 hay xy = 1 và x + y = 2.
x, y là nghiệm pt: z2 - 2z + 1 = 0 hay z = 1 hay x= y = 1.
\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)
\(ĐK:x\ge\frac{1}{2};y\ge0\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)
\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)
Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)
\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)
Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)
Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)
Suy ra (3) vô nghiệm
Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy
(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)
\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)
Ta có: \(\left(x+y+1\right)^2\ge o\)
Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)
Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)
Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài
Kết quả: x=0; y=-1