Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+y^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}+y^2-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2=\frac{9}{4}-y^2\)
Do \(\left(x+y+\frac{7}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-y^2\ge0\Rightarrow y^2\le\frac{9}{4}\)
Mà y nguyên \(\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-5\end{matrix}\right.\)
- Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) ko có x nguyên t/m (loại)
- Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) ko có x nguyên t/m (loại)
pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)
\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)
\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)
Dấu "=" tự xét nhé
mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha
x^2-2xy+x-2y<hoặc bằng 0
x(x+1)-2y(x+1)<hoặc bằng 0
(x+1)(x-2y)< hoăc bằng 0
mà x+1>0 do x>0
nên x-2y < hoặc bằng 0
x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y
A=x^2-5y^2+3x
=x^2-4y^2-y^2+3x
=(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0
suy ra GTLN của A=9 tại y=3,x=6
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813