Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2⋮xy+2\)<=> \(y\left(x^2-2\right)⋮xy+2\)
<=> x(xy+2)-2y-2x\(⋮\)xy +2
<=> 2(x+y)\(⋮\)xy+2
=> 2(x+y)\(\ge\)xy+2
=> y(2-x)\(\ge\)2-2x
Xét x=1 rồi tìm y
Xét x=2 => KTM
Xét x≥2 ta có \(y\le\frac{2x-2}{x-2}=\frac{2\left(x-2\right)+2}{x-2}=2+\frac{2}{x-2}\le4\)=>\(1\le y\le4\)
Xét các trường hợp của y để tìm x
Hơi nhiều trường hợp nhỉ =))
1)1) Do xyxy bình đẳng nên có thể giả sử xx ≤≤ yy
Từ x+y+1⋮xyx+y+1⋮xy và x+y+1,xy∈Nx+y+1,xy∈N
⇒x+y+1≥xy⇒x+y+1≥xy
⇔xy−x−y≤1⇔xy-x-y≤1
⇔xy−x−y+1≤2⇔xy-x-y+1≤2
⇔x(y−1)−(y−1)≤2⇔x(y-1)-(y-1)≤2
⇔(x−1)(y−1)≤2 (1)⇔(x-1)(y-1)≤2 (1)
Nên x≥3⇒y≥3⇒x−1≥2;y−1≥2x≥3⇒y≥3⇒x-1≥2;y-1≥2
⇒(x−1)(y−1)≥4(mt)⇒(x-1)(y-1)≥4(mt)
Vậy x<3x<3, mà x∈N⋅⇒x∈{1;2}x∈N⋅⇒x∈{1;2}
+)x=1⇒y+2⋮y⇔2⋮y⇒+)x=1⇒y+2⋮y⇔2⋮y⇒ [y=1y=2[y=1y=2
+)x=2⇒y+3⋮2y⇒y+3⋮y+)x=2⇒y+3⋮2y⇒y+3⋮y
⇔3⋮y⇒y≥2⇒y=3⇔3⋮y⇒y≥2⇒y=3(t/m)(t/m)
Vậy (x;y)∈{(1;1);(1;2);(2;1);(2;3);(3;2)}(x;y)∈{(1;1);(1;2);(2;1);(2;3);(3;2)}
2)2x+y−1⋮xy (1)2)2x+y-1⋮xy (1)
Do x,yx,y là số nguyên dương ⇒2x+y−1,xy∈N⋅⇒2x+y-1,xy∈N⋅
Từ (1)⇒2x+y−1≥xy(1)⇒2x+y-1≥xy
⇔xy−2xy≤−1⇔xy-2xy≤-1
⇔x(y−2)+y+2≤1⇔x(y-2)+y+2≤1
⇔x(y−2)−(y−2)≤1⇔x(y-2)-(y-2)≤1
⇔(x−1)(y−2)≤1 (2)⇔(x-1)(y-2)≤1 (2)
+)+) Xét x=1⇒2+y−1⋮yx=1⇒2+y-1⋮y
⇔y+1⋮y⇔1⋮y⇒y=1⇔y+1⋮y⇔1⋮y⇒y=1
+)+) Xét x=2⇒y+3⋮2yx=2⇒y+3⋮2y
⇒y+3⋮y⇔3⋮y⇒y+3⋮y⇔3⋮y
⇒⇒ [y=1(t/m)y=3(t/m)[y=1(t/m)y=3(t/m)
+)+) Xét x≥3⇒x−1≥2x≥3⇒x-1≥2
Nếu y≥3⇒y−2≥1y≥3⇒y-2≥1
⇒(x−1)(y−2)≥2⇒(x-1)(y-2)≥2 mt với (2)(2)
Suy ra y<3=>y=1y<3=>y=1 hay y=2y=2
+)y=1+)y=1 ta có:
2x⋮x2x⋮x luôn đúng
+)y=2⇒2x+1⋮2+)y=2⇒2x+1⋮2
⇔1⋮2x⇒1≥2x⇔1⋮2x⇒1≥2x Vô lý
Vậy (x,y)∈{(1;1);(2;3),xy∈N⋅}
tìm điều kiện của K để A chia hết cho 16 biết A=K ^4+2^ 3-16k^ 2-2k -15
Ta có: \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)(1)
Vì x > 0 nên \(\left(1\right)\Leftrightarrow x^2=2x\left(x-y\right)+2y-x+2\)
\(\Leftrightarrow x^2-2x^2+2xy-2y+x=2\Leftrightarrow\left(1-x\right)\left(x-2y\right)=2\)
Do x, y là số nguyên nên ta có bảng sau:
Mà x, y dương nên có các cặp số nguyên (x; y) thỏa mãn là (2; 2) và (3; 2)
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
=>xy^2(xy-x^2-5)=-27
x,y là số nguyên dương thì \(x,y^2\inƯ\left(-27\right)\)
=>\(x,y^2\in\left\{1;3;9;27\right\}\)
y^2=1 thì y=1
y^2=9 thì y=3
Khi y=1 thì x*(x-x^2-5)=-27
=>Loại
Khi y=3 thì 9x(3x-x^2-5)=-27
=>x=1