Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)
ta có: \(\left(3x-1\right)^2\ge0;\left|x-2y\right|\ge0\Rightarrow\left(3x-1\right)^2+\left|x-2y\right|\ge0\)
theo đề: \(\left(3x-1\right)^2+\left|x-2y\right|=0\Leftrightarrow\int^{\left(3x-1\right)^2=0}_{\left|x-2y\right|=0}\Leftrightarrow\int^{3x=1\Rightarrow x=\frac{1}{3}}_{x=2y\Rightarrow y=\frac{x}{2}=\frac{1}{\frac{3}{2}}=\frac{2}{3}}\)
khi đó 3x+12y=3.1/3+12.2/3=9
Vậy...
=biết x,y là các số thỏa mãn (3x-1)^2+|x-2y|=0 khi đó 3x+12y=
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
(3x2-51)2n=(-24)2n\(\Rightarrow\)(51-3x2)2n=(24)2n\(\Rightarrow\)(51-3x2)=24
\(\Rightarrow\)51-24=3x2\(\Rightarrow\)27\(\Rightarrow\)x2=32\(\Rightarrow\)x=3 hoặc x=-3
từ đề bài => 3x^2-51=24
=>3x^2=75
=>x^2=75:3=25
=>x=-5 hoặc x=5
x = 1
y = 1
Mk ko bít đúng ko nữa !