Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 1 = ( x + 1 )2
x + 1 = x2 + 2x + 1
x - 2x - x2 = - 1 + 1
- x - x2 = 0
- x ( x + 1) = 0
TH1: - x = 0 suy ra x = 0
TH2: x + 1 = 0 suy ra x = - 1
Vậy x = 0 hoặc x = - 1.
a)\(x\left(x-3\right)-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
b)\(\left(3x-5\right)\left(5x-7\right)+\left(5x+1\right)\left(2-3x\right)=4\)
\(\Leftrightarrow15x^2-46x+35-15x^2+7x+2-4=0\)
\(\Leftrightarrow33-39x=0\Leftrightarrow33=39x\Leftrightarrow x=\frac{33}{39}\)
a) \(x\left(x-3\right)-2x+6=0\)
\(x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b) \((3x-5)(5x-7)+(5x+1)(2-3x)=4\)
\(15x^2-46x+35+10x-15x^2+2-3x-4=0\)
\(33-39x=0\)
\(3\left(11-13x\right)=0\)
\(11-13x=0\)
\(13x=11\)
\(x=\frac{11}{13}\)
Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!
`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`
`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`
`=(x-2)/(x+1):(x-5)/(x+1)`
`=(x-2)/(x-5)`
\(\dfrac{x}{15}\)+\(\dfrac{x}{12}\)=4/1+1/2=9/2
=>x(\(\dfrac{1}{15}\)+\(\dfrac{1}{12}\))=9/2
=>x\(\cdot\)\(\dfrac{3}{20}\)=9/2
=>x=9/2:3/20=30
Vậy x=30
\(\dfrac{x}{15}+\dfrac{x}{12}=\dfrac{9}{2}\Rightarrow\left(\dfrac{1}{15}+\dfrac{1}{12}\right)x=\dfrac{9}{2}\)
\(\Rightarrow\left(\dfrac{12+18}{180}\right)x=\dfrac{9}{2}\Rightarrow\dfrac{30}{180}x=\dfrac{9}{2}\Rightarrow\dfrac{1}{6}x=\dfrac{9}{2}\Rightarrow x=\dfrac{9}{2}.6=27\)
a: Xét ΔABC có
AM là đường trung tuyến
G là trọng tâm
Do đó: \(\dfrac{AG}{AM}=\dfrac{2}{3}\)
Xét ΔABM có DG//BM
nên \(\dfrac{AD}{AB}=\dfrac{AG}{AM}\)
=>\(\dfrac{AD}{AB}=\dfrac{2}{3}\)
b: Xét ΔAMC có GE//MC
nên \(\dfrac{AE}{AC}=\dfrac{AG}{AM}\)
=>\(\dfrac{AE}{AC}=\dfrac{2}{3}\)
=>\(AE=\dfrac{2}{3}AC\)
AE+EC=AC
=>\(EC+\dfrac{2}{3}AC=AC\)
=>\(EC=\dfrac{1}{3}AC\)
\(AE=\dfrac{2}{3}AC=2\cdot\dfrac{1}{3}\cdot AC=2\cdot EC\)
Bài 3:
b: Xét ΔABC có
I là trung điểm của BC
IK//AC
Do đó: K là trung điểm của AB
Xét ΔABC có
I là trung điểm của BC
IH//AB
Do đó: H là trung điểm của AC
Xét ΔABC có
K là trung điểm của AB
H là trung điểm của AC
Do đó: HK là đường trung bình của ΔABC
Suy ra: HK//BC
Câu 5:
a. $|x+\frac{4}{5}|-\frac{1}{7}=0$
$|x+\frac{4}{5}|=\frac{1}{7}$
$\Rightarrow x+\frac{4}{5}=\pm \frac{1}{7}$
$\Rightarrow x=\frac{-23}{35}$ hoặc $x=\frac{-33}{35}$
v.
$2x+5-(x-7)=18$
$2x+5-x+7=18$
$x+12=18$
$x=6$
c.
$2(x+1)+4^2=2^4$
$2(x+1)+16=16$
$2(x+1)=0$
$x+1=0$
$x=-1$
d.
$\frac{x-3}{x+5}=\frac{5}{7}$
$\Rightarrow 7(x-3)=5(x+5)$
$\Rightarrow 7x-21=5x+25$
$\Rightarrow 2x=46$
$\Rightarrow x=23$
Câu 5:
\(a,\left|x+\dfrac{4}{5}\right|-\dfrac{1}{7}=0\\ \Leftrightarrow\left|x+\dfrac{4}{5}\right|=\dfrac{1}{7}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{7}\\x+\dfrac{4}{5}=-\dfrac{1}{7}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}-\dfrac{4}{5}\\x=-\dfrac{1}{7}-\dfrac{4}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{35}\\x=-\dfrac{33}{35}\end{matrix}\right.\\ b,2x+5-\left(x-7\right)=18\\ \Leftrightarrow2x-x=18-5-7\\ \Leftrightarrow x=6\\ c,2\left(x+1\right)+4^2=2^4\\ \Leftrightarrow2\left(x+1\right)=2^4-4^2=16-16\\ \Leftrightarrow2\left(x+1\right)=0\\ \Rightarrow x+1=0\\ \Leftrightarrow x=0-1=-1\\ d,\dfrac{x-3}{x+5}=\dfrac{5}{7}\left(x\ne-5\right)\\ \Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\\ \Leftrightarrow7x-21=5x+25\\ \Leftrightarrow7x-5x=25+21\\ \Leftrightarrow2x=46\\ \Leftrightarrow x=23\)
\(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)