Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y}{2-3}=\frac{y-z}{3-4}=\frac{x-z}{2-4}\) (T/c dãy tỷ số bằng nhau)
\(\Rightarrow\frac{x-z}{-2}=-\left(x-y\right)\left(1\right)\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^3=-\left(x-y\right)^2\left(x-y\right)\left(2\right)\)
\(\Rightarrow\frac{x-z}{-2}=-\left(y-z\right)\left(3\right)\)
Từ (1) và (3) \(\Rightarrow\left(x-y\right)=\left(y-z\right)\) Thay vào (2)
\(\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^2\left(y-z\right)\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(dpcm\right)\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
22+1=5 {x=2;y=2;z=5}
x=2
y=2
z=5