K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(2x=3y=5z\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)và \(x-y+z=-33\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=-\frac{33}{11}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-3\\\frac{y}{10}=-3\\\frac{z}{6}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-3.15=-45\\y=-3.10=-30\\z=-3.6=-18\end{cases}}\)

Vậy \(x=-45;y=-30;z=-18\)

18 tháng 7 2018

\(2x=3y=5z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

=> x = (-3).15 = -45

     y = (-3).10 = -30

     z = (-3).6 = -18