Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
b) Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-1;3\right);\left(-3;1\right);\left(3;-1\right)\right\}\)
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
a) (x+2).(y-3)=5
=> x+2 và y-3 thuộc Ư(5)={-1;-5;1;5}
ta có bảng sau :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 5 |
vậy ta có các cặp số (x;y) là : (-3;-2);(-7;2);(-1;8);(3;5)
c) x.y+3.x-7.y=21
=> x(y+3) - 7.y - 21 = 21 - 21
=> x(y+3) - 7.y - 7.3 = 0
=> x(y-3) - 7(y-3) = 0
=> (x-7)(y-3) = 0
=> x-7 = 0 hoặc y - 3 = 0
=> x = 7 hoặc y = 3
vậy_____
a/ xy-3y=7
=>y(x-3)=7
=>y thuộc U(7);x-3 thuộc U(7)
Ta có bảng:
y: 1 -1 7 -7
x-3: 7 -7 1 -1
x 10 -4 4 2
vậy (x;y) thuộc{(10;1);(-4;-1);(4;7);(2;-7)}
b/xy+x+y=3
=>x(y+1)+y+1=4
=>(x+1)(y+1)=4
bn tự lập bảng như trên nhé
x(y+1)+(y+1)-1=6
(x+1)(y+1)=7
<=>x+1=7va y+1=1
hoacx+1=-7va Y+1=-1
hoacx+1=1va y+1=7
hoacx+1=-1va y+1=-7
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh