Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng này của lớp 7 mà bro
\(x:y:z=3:5:4\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{3+5+4}=\frac{96}{12}=8\)
=> x = 24 ; y = 40 ; z = 32
Theo Đề Ra Ta Có :
x , y , z > 0
Và x + y + z = 180
\(\frac{x}{7}\)= \(\frac{y}{3}\)=\(\frac{z}{8}\)
Áp Dụng T/C dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}+\frac{y}{3}+\frac{z}{8}=\frac{180}{18}\)
\(\frac{x}{7}=\frac{180}{18}\Rightarrow x=70\)
\(\frac{y}{3}=\frac{180}{18}\Rightarrow y=30\)
\(\frac{z}{8}=\frac{180}{18}\Rightarrow z=80\)
MÌnh Nghĩ Là Có Thể Có Error
Ta chứng minh \(P\ge\frac{25}{64}\). Thật vậy:
Đặt \(p=x+y+z=\frac{3}{2},q=ab+bc+ca,r=abc\)
Cần chứng minh:
Dễ thấy khi r giảm thì f(r) giảm. Mà theo Schur: -3/8 + (2*q)/3=-1/9*p^3 + 4/9*q*p <= r
Nên \(f\left(r\right)\ge f\left(\frac{2q}{3}-\frac{3}{8}\right)=\frac{\left(4q-3\right)\left(q-6\right)}{9}\ge0\)
Done.
Bunyakovski hả?
Có: \(\left(x^3+y^3+z^3\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{2\left(x^2+y^2+z^2\right)^2}{3}\)
Cần chứng minh: \(\frac{2\left(x^2+y^2+z^2\right)^2}{3}+x^2y^2z^2\ge\frac{25}{64}\)
Or \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\left(x^2y^2z^2+\frac{1}{64}\right)\ge\frac{13}{32}\)
Or: \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\frac{1}{4}xyz\ge\frac{13}{32}=\frac{13}{108}\left(x+y+z\right)^3\)(*)
(1)
Điều thú vị là BĐT (*) đúng với mọi x,y,z thuộc R thỏa mãn x + y + z \(\ge0\) (nhờ đẳng thức (1) ).
Mà điều này luôn đúng do điều kiện...
Theo bài ra , ta có\(\frac{x}{9}=\frac{y}{5}=\frac{z}{3}\)và y - z = 12
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{3}=\frac{y-z}{5-3}=\frac{12}{2}=6\)
\(\Rightarrow\frac{x}{9}=6\Rightarrow x=54\)
\(\frac{y}{5}=6\Rightarrow y=30\)
\(\frac{z}{3}=6\Rightarrow z=18\)
Vậy x = 54 ; y = 30 ; z = 18
Toán lớp 4 ?-.-
lớp 4 mà học r sao
x1 = 2
x2 = ?