K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

dễ dàng pt đc \(A=\frac{4\left(x^2+2x+5\right)^2+256}{x^2+2x+5}=4\left(x^2+2x+5\right)+\frac{256}{x^2+2x+5}\ge64\)
Dấu = xảy ra khi \(4\left(x^2+2x+5\right)=\frac{256}{x^2+2x+5}\Rightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow x=1,x=-3\)

8 tháng 9 2021

\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)

Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)

\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

 

 

 

8 tháng 9 2021

P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)

      =(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)

áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)

=>P(x)≥64

Dấu = xảy ra khi x=-1 hoặc x=3

 

15 tháng 7 2015

\(A=\frac{\left(4x^4+16x^3+16x^2\right)+\left(40x^2+80x\right)+356}{x^2+2x+5}=\frac{4.\left(x^2+2x\right)^2+40\left(x^2+2x\right)+356}{x^2+2x+5}\)

\(=\frac{4\left[\left(x^2+2x\right)^2+10\left(x^2+2x\right)+25\right]+256}{x^2+2x+5}\)\(=\frac{4\left(x^2+2x+5\right)^2+4^4}{x^2+2x+5}=4\left[\left(x^2+2x+5\right)+\frac{4^3}{x^2+2x+5}\right]\)

Áp dụng Côsi:

\(A\ge4.2\sqrt{\left(x^2+2x+5\right).\frac{4^3}{x^2+2x+5}}=64\)

Dấu "=" xảy ra khi \(x^2+2x+5=\frac{4^3}{x^2+2x+5}\Leftrightarrow\left(x^2+2x+5\right)^2=64\Leftrightarrow x^2+2x+5=8\)(do x2+2x+5 > 0)

\(\Leftrightarrow x^2+2x-3=0\Leftrightarrow x=1\text{ hoặc }x=-3\)

Vậy GTNN của A là 64.

14 tháng 7 2016

toán 12 nha

1 tháng 5 2017

tui hỏng biết chỉ tui đi hay k cũng được!

bài này tìm GTLN thì có lẽ hay hơn -,- 

C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)

+) Nếu \(A=1\) thì \(x=-2\)

+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)

                                                        \(\Leftrightarrow\)\(A^2-10A\le0\)

                                                        \(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)

                                                        \(\Leftrightarrow\)\(0\le A\le10\)

\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

NV
30 tháng 7 2021

\(P=2016+\sqrt{\left(2x-1\right)^2+4}\ge2016+\sqrt{4}=2018\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2021

Ta có: \(4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{4x^2-4x+5}\ge2\Rightarrow P\ge2016+2=2018\)

\(\Rightarrow P_{min}=2018\) khi \(x=\dfrac{1}{2}\)

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?