K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

undefined

19 tháng 2 2021

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

28 tháng 5 2017

\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

ĐKXĐ:x\(\ge\)1

M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)

Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)

=>không tồn tại GTLN của M

---câu thứ 2 đọc đề không hiểu---

2.ĐKXĐ:x>-1

\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)

Áp dụng BĐT cosi cho 2 số dương

\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)

Dấu = xảy ra khi x+1=2<=>x=1

=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1

28 tháng 5 2017

câu đầu thiếu đk : x > -2

18 tháng 8 2021

\(A=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right)\div\frac{\sqrt{x}+1}{\sqrt{x}-5}\)( x >= 0 ; x khác 25 )

\(=\left[\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(=\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+1}\)

Còn bthuc B thì mình chả thấy đâu cả:)

3 tháng 11 2019

ĐK : x≥0

Ta có A=\(\frac{3-\sqrt{x}}{1+\sqrt{x}}\)

=\(\frac{-\left(\sqrt{x}+1\right)+4}{\sqrt{x}+1}\)

=\(-1+\frac{4}{\sqrt{x}+1}\)

Ta có x ≥ 0

\(\sqrt{x}\) ≥ 0

\(\sqrt{x}\) + 1 ≥ 1

\(\frac{1}{\sqrt{x}+1}\)\(\frac{1}{1}\)

\(\frac{4}{\sqrt{x}+1}\) ≤ 4

⇒-1 + \(\frac{4}{\sqrt{x}+1}\) ≤ -1 + 4 = 3

⇒ A ≤ 3

Dấu "=" xảy ra khi : x = 0

Vậy Amax=3 khi x = 0

3 tháng 11 2019

Hay quá, cảm ơn nhiều lun á....