K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

     \(x^3-7x^2-13x+91=0\)

\(\Rightarrow x^2\left(x-7\right)-13\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(x^2-13\right)=0\)

\(\Rightarrow\left(x-7\right)\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)

Tìm được \(x\in\left\{7;\sqrt{13};-\sqrt{13}\right\}\)

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

3 tháng 7 2016

x^3 + x=0

x (x^2 +1) =0

Th1:

x=1

Th2:

x^2 +1 =0

x^2 = -1

=> x thuộc rỗng

Vậy x=0

3 tháng 7 2016

x = 0 => 0^3 + 0 = 0 

12 tháng 9 2015

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0

còn lại thì e bó tay . canh 

12 tháng 9 2015

(x+2y)(x2-2xy+4y2)=0

<=>x3+(2y)3=0

<=>x3+8y3=0  (1)

(x-2y)(x2+2xy+4y2)=0

<=>x3-(2y)3=0

<=>x3-8y3=0  (2)

từ (1) và (2)=>x3+8y3-x3+8y3=0

<=>16y3=0

<=>y=0

thay y=0 vào (1) ta đc:

x3-0=0

<=>x3=0

<=>x=0

Ta có: \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=5\)

\(\Leftrightarrow x^2-2x+1-x^2+4=5\)

\(\Leftrightarrow-2x=0\)

hay x=0

8 tháng 10 2017

\(A=\left(7x-1\right)^2-4\left|1-7x\right|+5\)

\(\Rightarrow MinA=5\)khi và  chỉ khi x=1/7

8 tháng 10 2017

nguyen hoang nhờ bạn giải cụ thể ra giùm mình được k ạ?

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 1:

a. $=2x(x-3)$

b. $=x^3(x+3)+(x+3)=(x^3+1)(x+3)=(x+1)(x^2-x+1)(x+3)$

c. $=64-(x^2-2xy+y^2)=8^2-(x-y)^2$

$=(8-x+y)(8+x-y)$

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 2:

$(x+5)(x+1)+(x-2)(x^2+2x+4)-x(x^2+x-2)$

$=x^2+6x+5+(x^3-2^3)-(x^3+x^2-2x)$

$=x^2+6x+5+x^3-8-x^3-x^2+2x$

$=8x-3$

Ta có đpcm.

12 tháng 8 2018

ai đó giúp mình với !

12 tháng 8 2018

\(x-y=3\)  =>   \(x=3+y\)

\(P=xy=\left(3+y\right)y=y^2+3y=\left(y+1,5\right)^2-2,25\ge-2,25\)

Dấu "=" xảy ra  <=>  \(y=-1,5\)=>  \(x=1,5\)

Vậy MIN  \(P=-2,25\)khi   \(x=1,5;\)\(y=-1,5\)