Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chia hết cho B
=>\(49x^2+ax+b⋮7x-1\)
=>\(49x^2-7x+\left(a+7\right)x-\dfrac{1}{7}\left(a+7\right)+b+\dfrac{1}{7}\left(a+7\right)⋮7x-1\)
=>\(7x\left(7x-1\right)+\dfrac{1}{7}\left(a+7\right)\left(7x-1\right)+b+\dfrac{1}{7}\left(a+7\right)=0\)
b+1/7(a+7)=0
=>(a+7)+7b=0
=>a=-7b-7
Vậy: Với a,b là các số nguyên sao cho a=-7b-7 thì A chia hết cho B
Lời giải:
$49x=|2x+7|+|2x+7^2|+....+|2x+7^{50}|\geq 0$
$\Rightarrow x\geq 0$
$\Rightarrow 2x+7>0; 2x+7^2>0;....; 2x+7^{50}>0$
Do đó bài toán trở thành:
$(2x+7)+(2x+7^2)+....+(2x+7^{50})=49x$
$\underbrace{(2x+2x+...+2x)}_{50}+(7+7^2+....+7^{50})=49x$
$\Rightarrow 100x+(7+7^2+....+7^{50})=49x$
$\Rightarrow 7+7^2+....+7^{50} = -51x>0$
$\Rightarrow x<0$ (vô lý - loại)
Vậy không tồn tại $x$ thỏa mãn đề.
\(a,\Rightarrow x\in\varnothing\left(\left|4+2x\right|\ge0>-4\right)\\ b,\Rightarrow\left|3x-1\right|=x-2\\ \Rightarrow\left[{}\begin{matrix}3x-1=x-2\left(x\ge\dfrac{1}{3}\right)\\3x-1=2-x\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x\in\varnothing\\ c,\Rightarrow\left|x+15\right|=3x-1\\ \Rightarrow\left[{}\begin{matrix}x+15=3x-1\left(x\ge-15\right)\\x+15=1-3x\left(x< -15\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\left(tm\right)\\x=-\dfrac{7}{2}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x=8\)
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
\(\left(3x+2\right)-\left(x-1\right)=49x+1\)
\(\Leftrightarrow3x+1-x+1-49x-1=0\)
\(\Leftrightarrow-47x-1=0\)
\(\Leftrightarrow-47x=1\)
\(\Leftrightarrow x=-\dfrac{1}{47}\)
Ta có : (3x+2) - (x-1) = 49x + 1
\(\Leftrightarrow\) 3x + 2 - x +1 = 49x + 1
\(\Leftrightarrow\) 2x + 3 = 49x +1
\(\Leftrightarrow\) 49x + 1 - 2x -3 = 0
\(\Leftrightarrow\) 47x - 2 = 0
\(\Leftrightarrow\) x = \(\dfrac{2}{47}\)
Chuẩn 100%