Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài tập 2:
a/ A + (x2 - 2xy + y2) = x2 +2xy + y2
=> A = (x2 + 2xy + y2) - (x2 - 2xy + y2)
=> A = x2 + 2xy + y2 - x2 + 2xy - y2
=> A = (x2 - x2) + (2xy + 2xy) + (y2 - y2)
=> A = 0 + (2 + 2). xy + 0
=> A = 4xy
b/ B - (x2y-3xy2 +5) = 3x2 + 1 + 4x2y
=> B = (3x2 + 1 + 4x2y) + (x2y-3xy2 +5)
=> B = 3x2 + 1 + 4x2y + x2y - 3xy2 + 5
=> B = (1 + 5) + (4x2y - x2y) + 3x2 - 3xy2
=> B = 6 + 3x2y + 3x2 - 3xy2
D - 9x + 2y3 - 7x3y2 - 4x5y + 1 = 0
=> D = 0 + 9x + 2y3 - 7x3y2 - 4x5y + 1
=> D = 9x + 2y3 - 7x3y2 - 4x5y + 1
P.s: Lần sau bạn đăng 1 câu hỏi/ bài đăng thôi nhé! Và nhớ dùng công thức trực quan!
\(a.12-\left|x-3\right|=5x+\)\(8\)
\(\Leftrightarrow\left|x-3\right|=5x+8-12\)
\(\Leftrightarrow\left|x-3\right|=5x-4\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=5x-4\\x-3=-5x+4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{7}{6}\end{cases}}}\)
\(b.3-\frac{0.2x}{5}=\frac{7}{15}+1,4x\)
\(\Leftrightarrow\frac{15-0,2x}{5}=\frac{7+21x}{15}\)
\(\Leftrightarrow15.\left(15-0,2x\right)=5.\left(7+21x\right)\)
\(\Leftrightarrow225-3x=35+105x\)
\(\Leftrightarrow-3x-105x=35-225\)
\(\Leftrightarrow-108x=-190\)
\(\Rightarrow x=\frac{95}{54}\)
a, \(2,5:4x=0,5:0,2\)
\(\Rightarrow4x=\dfrac{2,5.0,2}{0,5}\)
\(\Rightarrow4x=1\Rightarrow x=\dfrac{1}{4}\)
b, \(\dfrac{1}{5}x:3=\dfrac{2}{3}:0,5\)
\(\Rightarrow\dfrac{1}{5}x=\dfrac{3.\dfrac{2}{3}}{0,5}\)
\(\Rightarrow\dfrac{1}{5}x=4\Rightarrow x=20\)
c, \(1,25:0,8=\dfrac{3}{8}:0,2x\)
\(\Rightarrow0,2x=\dfrac{0,8.\dfrac{3}{8}}{1,25}\)
\(\Rightarrow0,2x=0,24\Rightarrow x=1,2\)
Chúc bạn học tốt!!
a, \(2,5:4x=0,5:0,2\)
\(2,5:4x=2,5\)
\(4x=2,5:2,5\)
\(4x=1\)
\(x=1:4\)
\(x=\dfrac{1}{4}\)
Vậy .............
b, \(\dfrac{1}{5}x:3=\dfrac{2}{3}\)
\(\dfrac{1}{5}x=\dfrac{2}{3}.3\)
\(\dfrac{1}{5}x=2\)
\(x=2:\dfrac{1}{5}\)
\(x=10\)
Vậy .....
c, \(1,25:0,8=\dfrac{3}{8}:0,2x\)
\(1,5625=\dfrac{3}{8}:0,2x\)
\(0,2x=\dfrac{3}{8}:1,5625\)
\(0,2x=0,24\)
\(x=0,24:0,2\)
\(x=1,2\)
Vậy ...
mình biết làm đấy nhưng không biết ghi vào đây như thế nào!
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Mk sẽ giải từng câu
\(a)\) \(\left(3x+1\right)\left(x-2\right)>0\)
Trường hợp 1 :
\(\hept{\begin{cases}3x+1>0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x>2\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\frac{-1}{3}\\x>2\end{cases}}}\)
\(\Rightarrow\)\(x>2\)
Trường hợp 2 :
\(\hept{\begin{cases}3x+1< 0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x< 2\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{-1}{3}\\x< 2\end{cases}}}\)
\(\Rightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x>2\) hoặc \(x< \frac{-1}{3}\) thì \(\left(3x+1\right)\left(x-2\right)>0\)
Chúc bạn học tốt ~
a) (3x+1).(x-2)>0
TH1: 3x+1>0 TH2: x-2>0
3x > -1 x>2
x>-1/3
Vậy x>2
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
\(a,0,2x+7,51=-4,29\)
\(\Rightarrow0,2x=-4,29-7,51\)
\(\Rightarrow0,2x=-11,8\)
\(\Rightarrow x=-11,8:0,2=-59\)
\(b,\text{ }\frac{1}{3}\cdot x+\frac{2}{5}\cdot\left(x+1\right)=0\)
\(\frac{1}{3}\cdot x+\frac{2}{5}\cdot x+\frac{2}{5}=0\)
\(x\left(\frac{1}{3}+\frac{2}{5}\right)+\frac{2}{5}=0\)
\(x\cdot\frac{11}{15}+\frac{2}{5}=0\)
\(x\cdot\frac{11}{15}=0-\frac{2}{5}\)
\(x\cdot\frac{11}{15}=\frac{3}{5}\)
\(x=\frac{3}{5}\text{ : }\frac{11}{15}\)
\(x=\frac{9}{11}\)