Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2008}{2010}.\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
=> x + 1 = 2010
=> x = 2009
Ta có : \(\frac{2}{2\times3}+\frac{2}{3\times4}+....+\frac{2}{x\times\left(x+1\right)}=\frac{2008}{2010}\)
\(\Rightarrow2\times\left(\frac{1}{2\times3}+.....+\frac{1}{x\times\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}=\frac{1}{2010}\)
\(\Rightarrow x+1=2010\)
\(\Rightarrow x=2010-1=2009\)
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\)
\(\Rightarrow\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1=0\)
\(\Rightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\)
\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)
Mà \(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\ne0\)
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
Vậy x = -2012
\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\\ \Leftrightarrow1+\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}=0\\ \Leftrightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\\ \Leftrightarrow \left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\\ \Rightarrow x+2012=0\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}>0\right)\\ \Rightarrow x=-2012\)
Vậy \(x=-2012\)
(2008 x 2009 x 2010 x 2011) x (1 + 1/2 : 3/2 - 4/3)
=(2008 x 2009 x 2010 x 2011) x (1 + 1/3 - 4/3)
=(2008 x 2009 x 2010 x 2011) x (4/3 - 4/3)
=(2008 x 2009 x 2010 x 2011) x 0
=0
a)
200 - ( 2 . x + 6 ) = 8 . 2
200 - ( 2 . x + 6 ) = 16
2 . x + 6 = 200 - 16
2 . x + 6 = 184
x + 6 = 184 : 2
x + 6 = 92
x = 92 - 6
x = 86
b)
2 . x : 4 = 16
x : 4 = 16 : 2
x : 4 = 8
x = 8 . 4
x = 32
c)
2008 . x : 2008 . 5 = 2008 . 3
2008. ( x : 5 ) = 6024
x : 5 = 6024 : 2008
x : 5 = 3
x = 3 . 5
x = 15
`Answer:`
`1/3+1/6+1/10+...+2/(x.(x+1))=2008/2010`
`=2/6+2/12+2/20+...+2/(x.(x+1))=2008/2010`
`=2/(2.3)+2/(3.4)+2/(4.5)+...+(2)/(x.(x+1))=2008/2010`
`=2.(1/2-1/3+1/3-1/4+...+1/x(x+1))=2008/2010`
`=1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=1004/2010`
`=1/2-1/(x+1)=1004/2010`
`=>1/(x+1)=1/2-1004/2010`
`=>1/(x+1)=1/2010`
`=>x+1=2010`
`=>x=2010-1`
`=>x=2009`