Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\overline{x73y}\) chia hết cho 4 thì \(\overline{3y}\) phải chia hết cho 4
Mà: \(\overline{3y}\) ⋮ 4 Khi \(y\in\left\{2;6\right\}\)
\(1\le x\le9\)
Để \(\overline{x73y}\) chia hết cho 5 khi \(y\in\left\{0;5\right\}\)
\(1\le x\le9\)
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
5^x+9999=20y
vì 20y sẽ có tận cùng là 0 nên suy ra 5^x sẽ có tận cùng là 1
suy ra x=0
5^0 +9999=20y
1+9999=20y
20y=10000
y=10000:20
y=500
Vậy x=0,y=500
5^x+9999=20y
vì 20y thì luôn có tận cùng bằng 0 \(\Rightarrow\)5^x sẽ có tận cùng bằng 1
nếu x khác 0 thì 5^x sẽ có tận cùng là 5
vậy x khác 0 không thỏa mãn bài toán
nếu x=0 thì 5^0=1. Vậy x=1 thỏa mãn bài toán
ta có: 5^0+9999=20y
20y=10000
y=10000:20=500
vậy cặp số tự nhiên {x,y} là {1,500}
NHỚ H CHO MÌNH NHÉ
CẢM ƠN RẤT NHIỀU
4x + 5y = 35
=> 4x = 35 - 5y
=> 4x = 5.(7 - y)
=> 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 4x < hoặc = 35 nên x < 9
=> x = 0 hoặc 5
+ Với x = 0 thì 5y = 35 - 4.0 = 35 => y = 35 : 5 = 7
+ Với x = 5 thì 5y = 35 - 4.5 = 15 => y = 15 : 5 = 3
Vậy các cặp số tự nhiên (x;y) thỏa mãn đề bài là: (0;7) ; (5;3)
Tìm số nguyên p sao cho các số p+8 và p+10 cũng là các số nguyên tố
\(\text{Gọi ƯCLN(2x+5;x+2)=d}\left(d\in N\right)\)
\(\text{Ta có:}\)
\(\text{2x+5⋮d;x+2⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2(x+2)⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2x+4⋮d}\)
\(\Rightarrow\text{2x+5-(2x+4)⋮d}\)
\(\Rightarrow\text{2x+5-2x-4⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\Rightarrow\text{ƯCLN}\left(2x+5;x+2\right)=1\)
\(\Rightarrow\text{2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3}\)
\(\text{TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{Vậy không có cặp số tự nhiên (x,y) thỏa mãn}\)
Ta có 36 = 9.4. Mà ƯC(4,9) =1
Vậy để 34x5y chia hết cho 36 thì34x5ychia hết cho 4 và 9
34x5y chia hết cho 9 khi 3 + 4 + x + 5 + y9 => 12 + x + y9 (1)
34x5y chia hết cho 4 khi5y4 => y = 2 hoặc y = 6
Với y = 2 thay vào (1) => 14 + x: het9 => x = 4
Với y = 6 thay vào (1) => 18 + x9 => x = 0 hoặc x = 9
Vậy các cặp (x,y) cần tìm là: (4,2); (0,6) và (9,6)
a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5
TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7
TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8
Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}
34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9
TH1: y=0 => Các số chia hết cho 36: Không có số thoả
TH2: y=2 => Các số chia hết cho 36: 34452 => x=4
TH3: y=4 => Các số chia hết cho 36: Không có số thoả
TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9
TH5: y=8 => Các số chia hết cho 36: Không có số thoả
=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956
Vậy: (x;y)={(4;2); (0;6); (9;6)}