K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2021

Ta có:\(P=n^3-n^2+7n+10\)

\(=n^3-2n^2+n^2-2n-5n+10\)

\(=n^2\left(n-2\right)+n\left(n-2\right)-5\left(n-2\right)\)

\(=\left(n-2\right)\left(n^2+n-5\right)\)

Vì P là số nguyên tố nên 

\(n-2=1\Rightarrow n=3\)(nhận)

\(n^2+n-5=1\)\(\Rightarrow n^2+n-6=0\Rightarrow\left(n+3\right)\left(n-2\right)=0\Rightarrow n=-3\left(l\right);n=2\left(n\right)\)

Ta có:\(\hept{\begin{cases}n=3\Rightarrow P=7\left(n\right)\\n=2\Rightarrow P=0\left(l\right)\end{cases}}\)

Vậy n=3

DD
15 tháng 6 2021

\(P=n^3-n^2-7n+10=\left(n-2\right)\left(n^2+n-5\right)\)

- Với \(n-2< 0\Leftrightarrow n< 2\).

Bằng cách thử trực tiếp \(n=0,n=1\)thu được \(n=1\)thỏa mãn \(P=3\)là số nguyên tố. 

- Với \(n-2\ge0\)thì \(n-2\ge0,n^2+n-5>0\)khi đó \(P\)có hai ước tự nhiên là \(n-2,n^2+n-5\).

Để \(P\)là số nguyên tố thì: 

\(\orbr{\begin{cases}n-2=1\\n^2+n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=2,n=-3\end{cases}}\)

Thử lại các giá trị trên thu được \(n=3\)thì \(P=7\)thỏa mãn. 

Vậy \(n=1\)hoặc \(n=3\)