K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Đáp án A

Phương pháp: Để hàm số nghịch biến trên  và y’ = 0 tại hữu hạn điểm.

Cách giải: TXĐ: D =R

 nằm trong khoảng 2 nghiệm x1; x2

Hàm số nghịch biến trên khoảng (0;1) khi và chỉ khi:

TH1: 

TH2: 

Vậy  m ≥ 1 3  hoặc  m ≤ - 1

8 tháng 5 2019

23 tháng 5 2017

6 tháng 10 2018

3 tháng 1 2020

Đáp án A

24 tháng 5 2017

Đáp án A

Có y ' = m 2 − m − 2 x + m 2 . Hàm số nghịch biến trên  − 1 ; + ∞ ⇔ m 2 − m − 2 < 0 ⇔ m ∈ − 2 ; 1

8 tháng 7 2018

Đáp án A

30 tháng 9 2018

Đáp án A.

Tập xác định: D = ℝ \ − m . Ta có y ' = m 2 − 4 x + m 2 .

Để hàm số nghịch biến trên khoảng − ∞ ; 1  thì ta phải có

m 2 − 4 < 0 1 ≤ − m ⇔ − 2 < m < 2 m ≤ − 1 ⇔ − 2 < m ≤ − 1

Lưu ý: Với cách cho đáp án như trong câu hỏi này, ta có làm như sau:

- Thử với  m = − 2   . Khi đó y = − 2 x + 4 x − 2 = − 2 x − 2 x − 2 = − 2 . Suy ra với   m = − 2 thì hàm số không nghịch biến trên − ∞ ; 1 . Từ đó loại được đáp án B và C.

- Thử với  m = − 1   . Khi đó y = − x + 4 x − 1 . Ta có y ' = − 3 x − 1 2 < 0 ∀ x ≠ 1 .

Suy ra hàm số nghịch biến trên các khoảng − ∞ ; 1  và  1 ; + ∞   . Vậy A là đáp án đúng.

7 tháng 8 2018

30 tháng 4 2019

26 tháng 12 2017

Đáp án B

Ta có y ' = 3 ( m - 1 ) + ( 2 m + 1 ) sin   x  để hàm số nghịch biến trên  ℝ thì y ' ≤ 0  với mọi x xét BPT

3 ( m - 1 ) + ( 2 m + 1 ) sin   x ≤ 0 Nếu m = - 1 2  BPT luôn đúng. Với m > - 1 2  BPT ⇔ sin   x ≤ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≥ 1 ⇒ - 1 2 < m ≤ 2 5 . Với m < - 1 2  BPT ⇔ sin   x ≥ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≤ - 1 ⇒ m < - 1 2

Kết hợp hai trường hợp ta có  m ≤ 2 5