K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2015

để p là số nguyên thì n+ 4 phải chia hết cho 2n - 1

                        => 2(n+4) phải chia hết cho 2n -1

=> 2(n+4) - (2n-1) chia hết cho 2n-1

=> 9 chia hết cho 2n - 1 hay 2n -1 thuộc Ư(9) = {9;3;1}\

Nếu 2n - 1 = 9 => n = 5 => p = 9/9 = 1 nhưng 1 không là số nguyên tố nên loại

nếu 2n -1 = 3 => n = 2 => p = 6/3 = 2 là số nguyên tố => nhận 

nếu 2n - 1 = 1 => n = 1 => p = 5/1 = 5 là số nguyên tố => nhận

Vậy n = 1; 2 thoả mãn

11 tháng 4 2017

9 lay đau ra

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:
Để $p=(n+4)(2n-1)$ là snt thì 1 trong 2 thừa số của nó bằng $1$ và thừa số còn lại là snt.

Hiển nhiên $n+4>1$ với mọi $n$ tự nhiên.

$\Rightarrow 2n-1=1\Rightarrow n=1$

Khi đó: $p=5.1=5$ là snt (thỏa mãn)

19 tháng 3 2016

{0;1;4} chỉ là số nguyên dương thôi sao ko cả số nguyên âm !

đung thi chon

22 tháng 3 2016

sai chính tả rồi(đẻ=>để)

13 tháng 8 2016

không biết, khó quá