K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

ta có 6n+7 chia het cho 2n-1

=>6n-3+10 chia het cho 2n-1

=>3(2n-1) + 10 chia het cho 2n-1

mà 3(2n-1) chia hết cho 2n-1 nên 10 chia hết cho 2n-1

ta tim uoc cua 10 rui ban the vo nhe

tick cho mk nha

14 tháng 12 2017

Ta có :

6n + 7 = 6n + 2 + 5 = 2 . ( 3n + 1 ) + 5

vì 2 . ( 3n + 1 ) \(⋮\)3n + 1 để 6n + 7 \(⋮\)3n + 1 thì 5 \(⋮\)3n + 1 \(\Rightarrow\)3n + 1 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }

Lập bảng ta có :

3n+11-15-5
n0-2/34/3-2

Vì n thuộc N nên n = 0

Vậy n = 0

14 tháng 12 2017

6n + 7 chia hết cho 3n+1 (1)

3n+1 chia hết cho 3n+1 => 2.(3n+1) chia hết cho 3n + 1 => 6n+2 chia hết cho 3n +1 (2)

từ (1) và (2) suy ra

(6n+7) - (6n+2) chia hết cho 3n + 1

=> 5 chia hết cho 3n + 1

=> 3n+1=1; -1; 5 -5

rồi bạn thay vào để tính ra n

26 tháng 12 2016

Trước hết ta dùng ký hiệu ¯ (dấu gạch đầu) để chỉ một số có nhiều chữ số 
Theo đề bài ¯abcdef chia hết cho 7 ⇒ 10.(¯abcde) + f chia hết cho 7 (♥) 
Ta cần cm ¯fabcde chia hết cho 7 
Ta có 10.(¯fabcde) = 10.(10⁵.f + (¯abcde)) = 10⁶.f + 10.(¯abcde) = (10⁶ - 1)f + [10.(¯abcde) + f] 
Mà: 
10⁶ - 1 chia hết hết cho 7. Có nhiều cách để kiểm tra điều này: 
    1) 10⁶ - 1 = 999999 bấm máy thấy nó chia hết cho 7 :D 
    2) Sử dụng dấu hiệu chia hết cho 7 
    3) Dùng tính chất của đồng dư thức: 10⁶ ≡ 3⁶ = (9)³ ≡ 2³ ≡ 1 (mod 7) ⇒ 10⁶ - 1 chia hết cho 7 
10.(¯abcde) + f chia hết cho 7 do (♥) 
⇒ 10.(¯fabcde) chia hết cho 7 
⇒ (¯fabcde) chia hết cho 7 (vì 10 và 7 nguyên tố cùng nhau) 
Đó là đpcm

26 tháng 12 2016

abcdef = 1000.abc + def = 1001.abc - abc + def = 7.143. abc - (abc - def) chia hết cho 7

18 tháng 12 2018

\(6n+7⋮2n-1\Leftrightarrow6n-3+10=3\left(2n-1\right)+10⋮2n-1\)

Hay \(10⋮2n-1\)

Do đó 2n-1 là ước của 10

Do 2n-1 lẻ nên 2n-1 là ước lẻ của 10, do đó 2n*1 có các giá trị là 1 và 5

Từ đó tính được n=1 và n=3

18 tháng 12 2018

\(7+6n⋮2n-1\Leftrightarrow6n-3+10⋮\left(2n-1\right)\)

                             \(\Leftrightarrow3.\left(2n-1\right)+10⋮\left(2n-1\right)\)

                             \(\Leftrightarrow10⋮\left(2n-1\right)\)           (  vì \(3.\left(2n-1\right)⋮\left(2n-1\right)\)   )            

                             \(\Leftrightarrow2n-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)    

Mà  \(\left(2n-1\right):2\) dư 1 và \(n\in N\) nên \(2n-1=\pm1;5\)

Với 2n - 1  có giá trị lần lượt bằng: -1;1;5 thì n có giá trị lần lượt bằng : 0;1;3

 Vậy \(n=0;1;3\)

17 tháng 12 2015

7+6n chia hết cho 2n-1

10+6n-3 chia hết cho 2n-1

10+3(2n-1) chia hết cho 2n-1

=>10 chia hết cho 2n-1 hay 2n-1EƯ(10)={1;2;5;10}

=>2nE{2;3;6;10}

=>nE{1;3;5}

21 tháng 8 2017

a) n+13 chia hết cho n-5

=> n-5+5+13 chia hết cho n-5

=> n-5+18 chia hết cho n-5

=> n-5 chia hết cho n-5

=> 18 chia hết cho n-5

=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}

=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}

mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}

b) 15-2n chia hết cho n+1

=> 15-n+1+n+1-2 chia hết cho n+1

=> n+1+n+1+17 chia hết cho n+1

=> n+1 chia hết cho n+1

=> 17 chia hết cho n+1

=> n+1 thuộc Ư(17)={1;17;-1;-17}

=> n thuộc {0;16;-2;-18}

mà n là số tự nhiên và 2<,= 7 nên n=0

c) 6n+9 chia hết cho n-1

=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1

=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1

=> n-1 chia hết cho n-1

=> 15 chia hết cho n-1

=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}

=> n thuộc {2;4;6;16;0;-2;-4;-14}

mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}

a) n+13 chia hết cho n-5

=> n-5+5+13 chia hết cho n-5

=> n-5+18 chia hết cho n-5

=> n-5 chia hết cho n-5

=> 18 chia hết cho n-5

=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}

=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}

mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}

b) 15-2n chia hết cho n+1

=> 15-n+1+n+1-2 chia hết cho n+1

=> n+1+n+1+17 chia hết cho n+1

=> n+1 chia hết cho n+1

=> 17 chia hết cho n+1

=> n+1 thuộc Ư(17)={1;17;-1;-17}

=> n thuộc {0;16;-2;-18}

mà n là số tự nhiên và 2<,= 7 nên n=0

c) 6n+9 chia hết cho n-1

=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1

=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1

=> n-1 chia hết cho n-1

=> 15 chia hết cho n-1

=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}

=> n thuộc {2;4;6;16;0;-2;-4;-14}

mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}