Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Gọi chữ số hàng chục là x (0<x<9)
Gọi chữ số hàng đơn vị là y(0<y<9)
Vì tổng các chữ số bằng 6 ta có :
\(x+y=6\) (1)
Nếu thêm vào số đó 18 đơn vị thì được một số cũng viết bằng các chữ số đó nhưng theo thứ tự ngược lại nên ta có pt:
\(\left(10x+y\right)+18=10y+x\)
\(\Leftrightarrow\) \(9x-9y=-18\)
\(\Leftrightarrow\) \(x-y=-2\) (2)
Từ (1) và (2) ta có hệ :
\(\hept{\begin{cases}x+y=6\\x-y=2\end{cases}}\)
giải ra ta được :\(\hept{\begin{cases}x=2\\y=4\end{cases}}\) (tm)
Vậy số tự nhiên có 2 chữ số đó là 24
( a,b thuộc N , a # 0, a,b < 10)
Số mới có dạng : ba
Theo bài ra ta có:
ab . ba = 3154
Gọi số nhỏ là ab. Ta có :
ab - ( a + b ) = 27
a 10 + b -a - b = 27
9a = 27
a = 27 : 9
a = 3
Từ đó ta có : 3b . b3 = 3154
Vì 3.b có tận cùng là 4 nên b bằn 8. Vậy số cần tìm là 38
sorry bạn nha , tớ chưa học đến nhưng bạn có thể tham khảo câu hỏi tương tự nhé !
Gọi số tự nhiên có 2 chữ số là ab (0<=a,b<=9;a khác 0; a,b là số tự nhiên)
Vì tổng 2 chữ số là 9 => a+b= 9 (1)
Khi lấy số đó chia số ngược lại thì thương là 2 dư 18
\(\Rightarrow\overline{ab}=2\cdot\overline{ba}+18\\ \Leftrightarrow10a+b=20b+2a+18\Leftrightarrow8a-19b=18\left(2\right)\)
Từ (1),(2) ta có hệ phương trình
\(\left\{{}\begin{matrix}a+b=9\\8a-19b=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=9-a\\8a-19\left(9-a\right)=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=7\\b=2\end{matrix}\right.\left(t.m\right)\)
Vậy số phải tìm là 72
Đây là KQ của mk k biết coó đúng k
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài, ta có:
\(\overline{ab}+63=\overline{ba}\)và \(a+b=9\)
Từ đó, ta có HPT:
\(\hept{\begin{cases}a+b=9\\10a+b+63=10b+a\end{cases}\Rightarrow\hept{\begin{cases}a+b=9\\9a+63=9b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=9\\a+7=b\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Vậy số cần tìm là 18
Cho một số có hai chữ số, biết rằng tổng các chữ số của nó bằng 7 và khi đảo thứ tự hai chữ số của nó thì được số mới hơn số ban đầu 27 đơn vị. Khi đó chữ số hàng chục là bao nhiêu
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2