Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)
b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)
\(\Leftrightarrow-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)
\(\Leftrightarrow7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
a, `2/(x-1) in ZZ`.
`=> 2 vdots x - 1`
`=> x-1 in Ư(2)`
`=> x - 1 in {+-1, +-2}`.
`=> x - 1 = 1 => x = 2`.
`=> x - 1 = -1 => x = 0`.
`=> x - 1 = -2 => x = -1`.
`=> x - 1 = 2 => x = 3`.
Vậy `x = 2, 0, - 1, 3`.
b, `4/(2x-1) in ZZ`
`=> 4 vdots 2x - 1`.
`=> 2x - 1 in Ư(4)`
Vì `2x vdots 2 => 2x - 1 cancel vdots 2`
`=> 2x - 1 in {+-1}`
`=> 2x - 1 = -1 => x = 0`.
`=> 2x - 1 = 1 => x = 1`
Vậy `x = 0,1`.
c, `(x+3)/(x-1) in ZZ`.
`=> x + 3 vdots x - 1`
`=> x - 1 + 4 vdots x - 1`.
`=> 4 vdots x-1`
`=> x -1 in Ư(4)`
`=> x - 1 in{+-1, +-2, +-4}`
`x - 1 = 1 => x = 2`.
`x - 1 = -1 => x = 0`.
`x - 1 = 2 =>x = 3`.
`x - 1 = -2 => x = -1`.
`x - 1 = 4 => x = 5`.
`x - 1 = -4 => x = -3`.
Vậy `x = 2, 0 , +-1, 5, -3`.
a) Đặt \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=1-\frac{3}{x+3}\)
Để A nguyên thì \(\frac{3}{x+3}\) nguyên => \(3⋮x+3\)
=> \(x+3\in\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{-2;-4;0;-6\right\}\)
Vậy \(x\in\left\{-2;-4;0;-6\right\}\)
b) Đặt \(B=\frac{x-1}{2x+1}\)
Để B nguyên thì 2B nguyên
Ta có:
\(2B=\frac{2.\left(x-1\right)}{2x+1}=\frac{2x-2}{2x+1}=\frac{2x+1-3}{2x+1}=\frac{2x+1}{2x+1}-\frac{3}{2x+1}=1-\frac{3}{2x+1}\)
Để 2B nguyên thì \(\frac{3}{2x+1}\) nguyên => \(3⋮2x+1\)
=> \(2x+1\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{0;-2;2;-4\right\}\)
=> \(x\in\left\{0;-1;1;-2\right\}\)
Vậy \(x\in\left\{0;-1;1;-2\right\}\)
\(a=\frac{2x+4}{x-3}=\frac{2x-6+6+4}{x-3}=\frac{2x-6+10}{x-3}=\frac{2x-6}{x-3}+\frac{10}{x-3}=\)\(2+\frac{10}{x-3}\) Vay de 2x+4 /x-3 la so nguyen thi 2+10/x-3 phai la so nguyen hay 10/x-3 la so nguyen Suy ra x-3 thuoc uoc cua 10=(1;-1;2;-2;5;-5;10;-10) Roi giai ra tung truong hop
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
để A thuộc Z
=>2x+1 chia hết x-3
<=>2(x-3)+7 chia hết x-3
=>7 chia hết x-3
=>x-3 thuộc {1,-1,7,-7}
=>x thuộc {4,2,10,-4}
để B thuộc Z
=>x2-1 chia hết x+1
<=>x(x+1)-2 chia hết x+1
=>2 chia hết x+1
=>x+1 thuộc {1,-1,2,-2}
=>x thuộc {0,-2,1,-3}
1. Ta có \(\frac{n^2-2n+3}{n-2}=\frac{n\left(n-2\right)+3}{n-2}=n+\frac{3}{n-2}\)
Để \(\frac{n^2-2n+3}{n-2}\in Z\) thì \(\frac{3}{n-2}\in Z\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
2. \(\frac{x}{4}=\frac{10}{x+3}\)
ĐK: \(x\ne-3\)
\(\frac{x}{4}=\frac{10}{x+3}\)
\(\Leftrightarrow\frac{x}{4}-\frac{10}{x+3}=0\)
\(\Leftrightarrow\frac{x^2+3x-40}{4\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+3x-40=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-8\end{cases}}\left(tmđk\right)\)
b) \(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
ĐK: \(x\ne-2\)
\(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
\(\Leftrightarrow\left(x+2\right)^3=-49.7\)
\(\Leftrightarrow\left(x+2\right)^3=-343\)
\(\Leftrightarrow x+2=-7\)
\(\Leftrightarrow x=-9\left(tmđk\right)\)
bn Huyền ơi ở câu 1 bn chép sai đầu bài của bạn Thảo rùi
a) \(\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=\frac{x-2}{x-2}+\frac{5}{x-2}=1+\frac{5}{x-2}\)
Vì \(1\in Z\Rightarrow\frac{5}{x-2}\in Z\Rightarrow5⋮x-2\)
\(\Rightarrow x-2\inƯ\left(5\right)\)
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)
b) \(\frac{1-2x}{x+3}=\frac{-2x+1}{x+3}=\frac{\left(-2x-6\right)+7}{x+3}\)
\(=-\frac{2.\left(x+3\right)+7}{x+3}\)
\(=\frac{-2.\left(x+3\right)}{x+3}+\frac{7}{x+3}=-2+\frac{7}{x+3}\)
Vì \(-2\in Z\Rightarrow\frac{7}{x+3}\in Z\Rightarrow7⋮x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)