Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
p=3
mk có thể giải nhưng nó dài quá vs lại mk hơi lười bn thông cảm
Nếu trong phạm vi 100 thì p bằng các số sau thỏa mãn:
3 , 17 , 23 , 47 , 53 , 59 , 83 , 89
Nếu trong phạm vi 1000 thì các số sau cũng thỏa mãn
3 , 17 , 23 , 47 , 53 , 59 , 83 , 89 , 137 , 179 , 257 , 263 , 293 , 317 , 353 , 359 , 419 , 443 , 557 , 587 , 593 , 599 , 719 , 809 , 839 , 863 , 977
số đó là 3
3+10=13 là số nguyên tố
3+20=23 là số nguyên tố
hihi
nếu p = 2 thì p+10= 2+10=12 là hợp số(loại)
nếu p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố( thỏa mãn)
p + 20 = 3 + 20 = 23 là số nguyên tố( thỏa mãn )
nếu p > 3 p có dạng 3k+1 hoặc 3k+2 ( k thuộc số tự nhiên khác 0 )
trường hợp 1: p có dạng 3k +1 thì P + 20 = 3k+1 +20=3k+21= 3(k+7)chia hết cho 3 là hợp số ( loại ) (1 )
th2 : p có dạng 3k +2 thì p+10 = 3k+2 +10= 3k+12= 3(k+4) chia hết cho 3 là hợp số ( loại) (2)
từ(1) và (2) => p > 3 thì p ko thỏa mãn
vậy P chỉ có thể = 3