K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

a) 3n + 2 chia hết cho n - 1

\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1

\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1

\(\Rightarrow\) 5 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}

\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}

 

b) 3n + 24 chia hết cho n - 4

\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4

\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4

\(\Rightarrow\) 36 chia hết cho n - 4

\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}

\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}

 

c) 3n + 5 chia hết cho n + 1

\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1

\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1

\(\Rightarrow\) 2 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}

\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}

2 tháng 2 2017

tại sao bạn học giỏi vậyeoeo

19 tháng 2 2016

11,

a, 4x-3\(\vdots\) x-2 1

    x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2

Từ 12 ta có:

(4x-3)-(4x-8)\(\vdots\) x-2

\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2

\(\Rightarrow\)       5       \(\vdots\) x-2

\(\Rightarrow\) x-2\(\in\) Ư(5)

\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}

\(\Rightarrow\) x\(\in\) {-3;1;3;7}

Vậy......

Phần b và c làm tương tự như phần a pn nhé! haha

12 tháng 4 2016

Khó nhờ!

 

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

3 tháng 4 2016

4n-3 chia hết cho 3n-2 

=> 3(4n-3) chua hết cho 3n-2

=>4(3n-2) chia hết cho 3n-2

<=> 12n-9-12n-8 chia hết cho 3n-2

=> 17 chia hết cho 3n-2

3n-2 thuộc bội của 17 

rùi bn lập bảng ra với 3n-2 bằng bội của 17 rùi tính n nhé

tick mk nha NHI NHÕNG NHẼO

5 tháng 2 2019

3(4n-3)=12n-9

4(3n-2)=12n-8

(12n-8)-(12n-9)=1

12n-8 chia hết cho 3n-2

12n-9 chia hết cho 3n-2

⇒1 chia hết cho 3n-2

⇒3n-2=1 ⇌n=1

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

6n+3=6n+12-9=(6n+12)-9

để 6n+3 chia hết cho3n+6 thì

(6n+12)-9 chia hết cho3n+6

2(3n+6)-9 chia hết cho3n+6

vì 2(3n+6)chia hết cho3n+6

nên- 9 phảichia hết cho3n+6

3n+6 thuộc ước của -9

3n+6 thuộc -1;-9;-3;1;3;9

mà n làSTN nên  3n+6 là STN;3n+6>=6

3n+6=9

3n=3

n=1

6 tháng 4 2016

ta có:\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)

Để 6n + 3 chia hết cho 3n + 6 thì 9 chia hết cho 3n + 6

=> 3n + 6 ( Ư )9

=> 3n = 6 (  1 ,3,9)

=>3n = 3

=>n= 3 : 3

=>n= 1vui

AH
Akai Haruma
Giáo viên
16 tháng 12 2016

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

25 tháng 2 2016

Ta có :

n2 - n - 1 = n.(n - 1) - 1 chia hết cho (n - 1)

Do n.(n - 1) chia hết cho (n - 1) nên suy ra 1 chia hết hết cho (n - 1)

nên (n - 1) \(\in\) Ư(1) = {-1; 1}

\(\Leftrightarrow\) n \(\in\) {0; 2}

5 tháng 2 2017

Theo đề, ta có :

\(\left(n^2-n-1\right)⋮\left(n-1\right)\)

<=> n( n - 1) -1 \(⋮\) ( n - 1)

<=> 1 \(⋮\) ( n - 1) ( vì n( n - 1) \(⋮\) ( n - 1)

<=> \(\left(n-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(n-1=1\Rightarrow n=2\)

\(n-1=-1\Rightarrow n=0\)

Vậy \(n\in\left\{0;2\right\}\)thì (n2 - n - 1) \(⋮\) (n - 1)

28 tháng 2 2016

Ta có : 4n - 5 chia hết cho n - 3

=> 4n - 12 + 17 chia hết cho n - 3

=> 4(n-3) + 17 chia hết cho n - 3

=> 17 chia hết cho n - 3

=> n - 3 \(\in\) Ư(17) = {+1;+17}

Với n - 3 = 1 => n = 4

Với n - 3 = -1 =. n = 2

Với n - 3 = 17 => n = 20

Với n - 3 = -17 => n = -14

Vậy n \(\in\) {4;2;20;-14}