K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

a, n - 1  chia hết cho n  - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1 

Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1 

=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6 

b, Tương tự 

c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)

\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)

16 tháng 1 2019

a) Ta có : 3n + 2 chia hết cho n - 1

         => 3n + 2 - 3.( n - 1) chia hết cho n - 1

         => 3n + 2 - ( 3n - 3 ) chia hết cho n - 1

        =>  3n + 2 - 3n + 3 chia hết cho n - 1

         => 5 chia hết cho n -1

        => n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}

Ta có bảng ;

n-11-15-5
n206-6

 Vậy n thuộc { 2;0;6;-6}

b) Ta có : 3n + 24 chia hết cho  n -4 

           => 3n + 24 - 3.(n-4) chia hết cho n -4

           => 3n + 24 - (3n - 12 ) chia hết cho n -4

            => 3n + 24 - 3n + 12 chia hết cho n -4

            => 36 chia hết cho n -4

            => n - 4 thuộc Ư(36) ( bạn tự làm nhé)

c) Tương tự nhé

31 tháng 1 2016

a) ( 3n + 2 ) chia hết cho n - 1

​Ta có : 3n + 2 = 3n - 1 + 3

​Vì 3n - 1 chia hết cho n - 1

=> 3 chia hết cho n - 1

​=> n - 1 thuộc Ư( 3 )

​Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }

​=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }

​Vậy n thuộc { 2 ; 0 ; 4 ; -2 }

b ) ( 3n + 24 ) chia hết cho n - 4

​Ta có : 3n + 24 = 3n - 4 + 28

​Vì 3n - 4 chia hết cho n - 4

=> 28 chia hết cho n - 4

​Xong bạn làm tương tự như câu a nha

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

9 tháng 8 2015

a) n - 6 chia hết cho n-1

n - 1 - 5 chia hết cho n - 1

n - 1 thuộc U(-5)

Rồi bạn liệt kê ra                 

30 tháng 5 2017

a) n -6 chia hết cho n-1

n-1-5 chia hết cho n -1

n-1 chia hết cho n-1

=> n-1 € Ư (5)={1;5;-1;-5}

+ n-1 =1=>n=2

+n-1=5=>n=6

+n-1=-1=>n=0

+n+1=-5=>n=-4

=>n={2;6;0;-4}

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}

17 tháng 2 2016

a,3n+2 chia hết cho n-1

=>3n-3+5 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Mà 3(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1\(\in\)Ư(5)={-5,-1,1,5}

=>n\(\in\){-4,0,2,6}

b,3n+24 chia hết cho n-4

=>3n-12+36 chia hết cho n-4

=>3(n-4)+36 chia hết cho n-4

Mà 3(n-4) chia hết cho n-4

=>36 chia hết cho n-4

Bạn làm tiếp nha

c,n2+5 chia hết cho n+1

=>n2-1+6 chia hết cho n+1

=>(n-1).(n+1)+6 chia hết cho n+1

Mà (n-1).(n+1) chia hết cho n+1

=>6 chia hết cho n+1

Bạn tự làm tiếp nha

8 tháng 1 2017

n+6 ⋮ n-5

Vì n-5 ⋮ n-5

=> n+6 - (n-5) ⋮ n-5

=> n+6 - n+5 ⋮ n-5

=> 11 ⋮ n-5

=> n-5 \(\in\)Ư(11)

=> n-5 \(\in\){1;-1;11;-11}

=> n \(\in\){6;4;16;-6}

Vậy...

3n+22 ⋮ n-5

Vì 3(n-5) ⋮ n-5

=> 3n+22 - 3(n-5) ⋮ n-5

=> 3n+22 - 3n+15 ⋮ n-5

=> 37 ⋮ n-5

=> n-5 \(\in\)Ư(37) 

=> n-5 \(\in\){1;-1;37;-37}

=> n \(\in\){6;4;42;-32}

Vậy...

2(n+1) ⋮ n-2

Vì 2(n-2) ⋮ n-2

=> 2(n+1) - 2(n-2) ⋮ n-2

=> 2n+2 - 2n+4 ⋮ n-2

=> 6 ⋮ n-2

=> n-2 \(\in\)Ư(6)

=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}

=> n \(\in\){3;1;4;0;5;-1;8;-4}

Vậy...

8 tháng 1 2017

a) (n+6)-(n-5) chia hết cho n-5

suy ra 1chia hết cho n-5 

phần còn lại tự giải

b) 3n+2 chia hết cho n-5

3n-15+37 chia hết cho n-5

(3n-15)+37 chia hết cho n-5

3x(n-5)+37 chia hết cho n-5

37 chia hết cho n-5

tự giải phần sau

c) chịu

1 tháng 2 2016

a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5 

b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36

c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4

1 tháng 2 2016

a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)

=>n-1 thuộc ƯỚC của 3

=>n-1=1=>n=2

=>n-1=-1=>n=0

=>n-1=3=>n=4

=>n-1=-3=>n=-1

b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)

=>n-4 thuộc ƯỚC của 3 

=>n-4=1=>n=5

=>n-4=-1=>n=3

=>n-4=3=>n=7

=>n-4=-3=>n=1

câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa

10 tháng 3 2020

1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)

- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)

-  Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)

- Ta có bảng giá trị:

\(2n+1\)\(-1\)   \(1\)      \(-11\)\(11\)    
\(n\)\(-1\)\(0\)\(-6\)\(5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-6,-1,0,5\right\}\)

2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)

- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)

\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)

- Ta có bảng giá trị: 

\(n+2\)\(-1\)   \(1\)       \(-29\)\(29\)   
\(n\)\(-3\)\(-1\)\(-31\)\(27\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

 Vậy \(n\in\left\{-31,-3,-1,27\right\}\)

3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)

- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

- Ta có bảng giá trị:

\(n-1\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)\(-8\)\(8\)
\(n\)\(0\)\(2\)\(-1\)\(3\)\(-3\)\(5\)\(-7\)\(9\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)