K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Ta có: \(\frac{n-2}{n-5}=\frac{n-5+3}{n-5}=1+\frac{3}{n-5}\)

Để phân số là số nguyên thì \(\frac{3}{n-5}\)phải nguyên hay \(3⋮\left(n-5\right)\)

=>\(\left(n-5\right)\in\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{6;-4;2;8\right\}\)

Vậy...

2 tháng 3 2020

Ta có:

2n+3/n-1= 2(n-1)+4 / n+1= 2(n-1) /n-1+4/n-1=2+4/n-1

Để p/s có giá trị nguyên=>4chia hết cho n-1 hay n-1 thuộc Ư(4)=(1;-1;2;-2;4;-4)

=>n-1=1=>n=2

   n-1=-1=>n=-0

  n-1=2=>n=3

  n-1=-2=>n=--1

  n-1=4=>n=5

 n-1=-4=>n=-3

2 tháng 3 2020

\(\frac{2n+3}{n-1}=\frac{2n-2+5}{n-1}=\frac{2\left(n-1\right)+5}{n-1}\)

để phân số có giá trị nguyên thì 2(n - 1) + 5 \(⋮\) n - 1 và n - 1 \(\ne\) 0  hay n \(\ne\) 1(vì mẫu số phải khác 0)

                                                     hay 5 \(⋮\)n - 1

vậy \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

vậy \(n\in\left\{2;0;6;-4\right\}\)(thỏa)

4 tháng 5 2020

Bg

Để phân số \(\frac{n^2+1}{n-2}\)có giá trị là một số nguyên thì n2 + 1 (tử số) chia hết cho n - 2 (mẫu số)

Ta có: n2 + 1 \(⋮\)n - 2     (n \(\inℤ\))

=> n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2

Vì n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2 với n(n - 2) \(⋮\)n - 2 và 2(n - 2) \(⋮\)n - 2

Nên 3 \(⋮\)n - 2

=> n - 2 \(\in\)Ư (3)

Ư (3) = {-1; -3; 1; 3}

=> n - 2 = -1 hay -3 hay 1 hay 3

     n      = -1 + 2 hay -3 + 2 hay 1 + 2 hay 3 + 2

     n      = 1 hay -1 hay 3 hay 5.

Vậy n \(\in\){1; -1; 3; 5}

4 tháng 5 2020

Để p/s là số nguyên <=>      n2+1  \(⋮\)n -2       1

Có (n-2) x (n+2)  \(⋮\)n -2  => n2 -4 \(⋮\)n-2         2

Lấy  - 2  có       5 \(⋮\)n-2    => n-2\(\in\)( 1 ; 5 ;-1 ; -5 )

                                             => n \(\in\)( 3 ; 7; 1 ;-3 )

17 tháng 3 2020

Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)

\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)

\(\Leftrightarrow6n-9+11⋮2n-3\)

Ta thấy \(6n-9⋮2n-3\forall n\)

\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)

...

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

\(b,\frac{7}{n-1}\)

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n-11-17-7
n208-6

\(c,\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{2}{n-1}\)

\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta lập bảng 

n-11-12-2
n23-1
4 tháng 3 2020

b)\(\frac{7}{n-1}\)để n \(\in N\)thì\(7⋮n-1\)

=> n-1 \(\inƯ\left(7\right)=\left\{1;7\right\}\)

ta có bảng :

n-117  
n28  

vậy n \(\in\left\{2;8\right\}\)

mấy câu khác tương tự

15 tháng 4 2020

a) B là phân số khi n-1\(\ne\)0

<=> n\(\ne\)1

b) thay n=6 (tm) ta được \(B=\frac{-10}{6-1}=\frac{-10}{5}=-2\)

thay n=-5 (tm) ta được \(B=\frac{-10}{-5-1}=\frac{-10}{-6}=\frac{5}{3}\)

c) B có giá trị nguyên khi -10 chia hết cho n-1 (n khác 1)

=> n-1 thuộc Ư (-10)={-10;-5;-2;-1;1;2;5;10}

Ta có bảng

n-1-10-5-2-112510
n-9-4-1023611

ĐCĐK => x=.....

2 tháng 3 2021

\(\Rightarrow A=\frac{6n+2-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\)=\(2-\frac{5}{3n+1}\)

Để A có giá trị nguyên \(\Leftrightarrow5⋮3n+1\Rightarrow3n+1\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow3n\in\left\{-6;-2;0;4\right\}\Rightarrow n\in\left\{-2;-\frac{2}{3};0;\frac{4}{3}\right\}\) Mà n \(\in Z\) 

\(\Rightarrow n\in\left\{-2;0\right\}\)

2 tháng 3 2021

Trả lời:

Ta có: \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)

 Để A là số nguyên thì \(\frac{5}{3n+1}\)là số nguyên

=> \(5⋮3n+1\) hay \(3n+1\inƯ\left(5\right)\)\(=\left\{\pm1;\pm5\right\}\)

 Ta có bảng sau:

3n+11-15-5
3n0-24-6
n0\(\frac{-2}{3}\)(loại)\(\frac{4}{3}\)(loại)-2

Vậy n \(\in\){ 0 ; -2 } thì A có giá trị nguyên