Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Để phân số \(\frac{n^2+1}{n-2}\)có giá trị là một số nguyên thì n2 + 1 (tử số) chia hết cho n - 2 (mẫu số)
Ta có: n2 + 1 \(⋮\)n - 2 (n \(\inℤ\))
=> n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2
Vì n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2 với n(n - 2) \(⋮\)n - 2 và 2(n - 2) \(⋮\)n - 2
Nên 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư (3)
Ư (3) = {-1; -3; 1; 3}
=> n - 2 = -1 hay -3 hay 1 hay 3
n = -1 + 2 hay -3 + 2 hay 1 + 2 hay 3 + 2
n = 1 hay -1 hay 3 hay 5.
Vậy n \(\in\){1; -1; 3; 5}
Để A có giá trị nguyên hay A \(\in\)Z thì ( 3 - n ) \(\in\)Ư(4) .
Mà : Ư(4) = { 1 ; 2 ; 4 ; -1 ; - 2 ; -4 }
Nếu : 3 - n = 1 => n = 2
3 - n = 2 => n = 1
3 - n = 4 => n = -1
3 - n = -1 => n = 4
3 - n = -2 => n = 5
3 - n = -4 => n = 7
Vậy : n \(\in\){ 2 ; 1 ; -1 ; 4 ; 5 ; 7 }
Ta có:
2n+3/n-1= 2(n-1)+4 / n+1= 2(n-1) /n-1+4/n-1=2+4/n-1
Để p/s có giá trị nguyên=>4chia hết cho n-1 hay n-1 thuộc Ư(4)=(1;-1;2;-2;4;-4)
=>n-1=1=>n=2
n-1=-1=>n=-0
n-1=2=>n=3
n-1=-2=>n=--1
n-1=4=>n=5
n-1=-4=>n=-3
\(\frac{2n+3}{n-1}=\frac{2n-2+5}{n-1}=\frac{2\left(n-1\right)+5}{n-1}\)
để phân số có giá trị nguyên thì 2(n - 1) + 5 \(⋮\) n - 1 và n - 1 \(\ne\) 0 hay n \(\ne\) 1(vì mẫu số phải khác 0)
hay 5 \(⋮\)n - 1
vậy \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
vậy \(n\in\left\{2;0;6;-4\right\}\)(thỏa)
Để A nguyên thì :
n + 3 chia hết cho n - 2
\(\Rightarrow\)n - 2 + 5 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
\(\Rightarrow\)5 chia hết cho n - 2
\(\Rightarrow\)n - 2 thuộc w(5) = { -5 ; -1 ; 1 ; 5 }
\(\Rightarrow\)n thuộc { -3 ; 1 ; 3 ; 7 }
Vậy n thuộc { -3 ; 1 ; 3 ; 7 } thì A nguyên
Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)
\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)
\(\Leftrightarrow6n-9+11⋮2n-3\)
Ta thấy \(6n-9⋮2n-3\forall n\)
\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)
...
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)