Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4:4,9=x:\left(-28\right)\)
\(\Rightarrow\frac{1,4}{4,9}=\frac{x}{-28}\)
\(\Leftrightarrow1,4.\left(-28\right)=4,9x\)
\(\Leftrightarrow-39,2=4,9x\)
\(\Leftrightarrow x=-8\)
#H
Ta có: 1,4/4,9= x/-28
=> 1,4. (-28)= 4,9.x
=> -39,2= 4,9.x
=> x= -39,2: 4,9
=> x= -8
Mọi người ơn cái chỗ 193 phải là 193 nhé ạ
mong mọi người giúp đỡ em ạ
a) Theo đề bài : ab = 3ab
\(\Rightarrow\) 10a + b = 3ab
\(\Rightarrow\) 10a + b chia hết cho a
\(\Rightarrow\)bchia hết cho a
Để A là ps thì A khác 0
=> 7/n - 5 khác 0
=> n - 5 khác 0
=> n khác 5
Mà n là stn
\(\Rightarrow n\in N^∗\ne5\)
Ta có : A = \(\frac{2n+7}{n+3}\)=\(\frac{2\left(n+3\right)+1}{n+3}\)= 2 + \(\frac{1}{n+3}\)
Do đó: Để A là số nguyên thì n + 3 \(\in\)Ư(1) = {-1;1}
=> n = -4, -2
Gọi tổng số người là A (0<A<1000)
Vì A chia 20; 25; 30 đều dư 15 nên A tận cùng là 5
Mà A chia hết cho 41, A<1000 nên A có thể là 205, 615
Ta thấy số 625 thỏa mãn.
Vậy.............
k cho mình nha
\(A=\left|x+19\right|+\left|y-5\right|+2020\)
Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y;2020>0\)
Suy ra : \(\left|x+19\right|+\left|y-5\right|+2020\ge2020\)
Dấu ''='' xảy ra : \(\hept{\begin{cases}x+19=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy GTNN A = 2020 <=> x = -19 ; y = 5
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
\(\Rightarrow A=\frac{6n+2-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\)=\(2-\frac{5}{3n+1}\)
Để A có giá trị nguyên \(\Leftrightarrow5⋮3n+1\Rightarrow3n+1\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow3n\in\left\{-6;-2;0;4\right\}\Rightarrow n\in\left\{-2;-\frac{2}{3};0;\frac{4}{3}\right\}\) Mà n \(\in Z\)
\(\Rightarrow n\in\left\{-2;0\right\}\)
Trả lời:
Ta có: \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)
Để A là số nguyên thì \(\frac{5}{3n+1}\)là số nguyên
=> \(5⋮3n+1\) hay \(3n+1\inƯ\left(5\right)\)\(=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
Vậy n \(\in\){ 0 ; -2 } thì A có giá trị nguyên