Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=\frac{2\left(n+3\right)}{n+3}+\frac{1}{n+3}=2+\frac{1}{n+3}\)
Để A là số nguyên thì \(\frac{1}{n+3}\)là số nguyên
=>1 chia hết cho n+3
=>n+3\(\in\)Ư(1)
=>n+3\(\in\){-1;1}
=>n\(\in\){-4;-2}
Vậy tổng các giá trị của n là (-4)+(-2)=-6
A nguyên < = > 2n + 7 chia hết cho n + 3
=> 2n + 6 + 1 chia hết cho n + 3
=> 2.(n + 3) + 1 chia hết cho n + 3
=> 1 chia hết cho n + 3
=> n + 3 thuộc Ư(1) = {-1; 1}
=> n thuộc {-4; -2}
Tổng: -4 + (-2) = -6.
Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)
\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)
\(\Leftrightarrow6n-9+11⋮2n-3\)
Ta thấy \(6n-9⋮2n-3\forall n\)
\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)
...
ĐỂ \(\frac{7}{2n-1}\) có gtri nguyên <=> 7 chia hết cho 2n-1
=>2n-1 thuộc tập hợp Ư(7)={7;1;-7;-1}
=>2n thuộc {8;2;-6;0}=>n thuộc {4;1;-3;0}
Ta có:
2n+3/n-1= 2(n-1)+4 / n+1= 2(n-1) /n-1+4/n-1=2+4/n-1
Để p/s có giá trị nguyên=>4chia hết cho n-1 hay n-1 thuộc Ư(4)=(1;-1;2;-2;4;-4)
=>n-1=1=>n=2
n-1=-1=>n=-0
n-1=2=>n=3
n-1=-2=>n=--1
n-1=4=>n=5
n-1=-4=>n=-3
\(\frac{2n+3}{n-1}=\frac{2n-2+5}{n-1}=\frac{2\left(n-1\right)+5}{n-1}\)
để phân số có giá trị nguyên thì 2(n - 1) + 5 \(⋮\) n - 1 và n - 1 \(\ne\) 0 hay n \(\ne\) 1(vì mẫu số phải khác 0)
hay 5 \(⋮\)n - 1
vậy \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
vậy \(n\in\left\{2;0;6;-4\right\}\)(thỏa)
a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)
Để A là số nguyên
=> 2/n-3 là số nguyên
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2)={1;-1;2;-2}
...
rùi bn tự thay giá trị của n -3 vào để tìm n nhé!
b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
Để B là số nguyên
=> 1/n+1 là số nguyên
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = { 1;-1}
...
Ta có : A = \(\frac{2n+7}{n+3}\)=\(\frac{2\left(n+3\right)+1}{n+3}\)= 2 + \(\frac{1}{n+3}\)
Do đó: Để A là số nguyên thì n + 3 \(\in\)Ư(1) = {-1;1}
=> n = -4, -2