Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu n lẻ thì k ≡ -5 ( mod 7 )
Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((
Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:
Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)
Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)
Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)
Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)
Do vậy ta có đpcm.
P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi
Chứng minh rằng mọi số nguyên dương n thì
B=3^n+3 - 2^n+3 + 3^n+1 - 2^n+1 chia hết cho 10
giúp mik nha
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
a. Để x là số nguyên
Thì -3 chia hết cho 2a +1
==> -3 chia hết cho 2a —3 +4
Vì -3 chia hết cho -3
Nên -3 chia hết cho 2a+4
2a+4 € Ư(3)
2a+4€{1;-1;2;-3}
Th1: 2a+4=1
2a=1–4
2a=-3
a=-3:2
a=-3/2
Th2: 2a+4=-1
2a=-1-4
2a=-5
a=-5:2
a=-5/2
Th3: 2a+4=3
2a=3-4
2a=-1
a=-1:2
a=-1/2
TH4: 2a+4=-3
2a=-3-4
2a=-7
a=-7:2
a=-7/2
Mình biết 1 câu thôi
ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )