K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

đặt x = \(\frac{a}{b}\)trong đó a,b \(\in\)Z ; a,b \(\ne\)0 ; ( |a| , |b| ) = 1 .

Ta có :

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\in Z\)\(\Rightarrow\)a2 + b2 \(⋮\)ab             ( 1 )

Từ ( 1 ) suy ra b2 \(⋮\)a, mà ( |a|, |b| ) = 1 nên b \(⋮\)a. Cũng do ( |a|,|b| ) = 1 nên a = 1 hoặc a = -1

Cũng chứng minh tương tự như trên, ta được b = 1 hoặc b = 01

Do đó : x = 1 hoặc x = -1

8 tháng 6 2017

Ta có:
 \(x+\frac{1}{x}=\frac{x^2+1}{x}\)
Đểc \(\frac{x^2+1}{x}\)  là số nguyên \(\Rightarrow x^2+1\)  phải chia hết cho x
Lại có \(x^2\)  chia hết cho x
 \(\Rightarrow x^2+1-x^2\)chia hết cho x
\(\Rightarrow1\) chia hết cho x
\(\Rightarrow x=1\) hoặc \(x=-1\)