Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17576 và 19683
Bài này có trong tạp chí Toán Tuổi Thơ
Bài này của lớp 6
Gọi số đó là (ab)
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27
gọi số cần tìm là ab (a khác 0; a; b là các chữ số)
tổng 2 chữ số của số đó nhỏ hơn số đó 6 lần
=> a + b < 6. ab
=> a+b < 6(10a+b)
=> 59a +5b > 0 (*) thêm 25 vào tích của 2 chữ số sẽ được số viết theo thứ tự ngược lại với số đã cho
=> a.b + 25 = ba
=> a.b + 25 = 10b + a
=> a.b - a + 25 -10b = 0
=> a.(b - 1) - 10(b -1) = -15
=> (a-10)(b-1) = -15
=> a -10 ; b-1 thuộc Ư(15) = {15; 1; -15; -1; 5; 3;-5;-3; }
Do a là chữ số nên a- 10 < 0 => a- 10 chỉ có thể nhận các giá trị -15; -5;-1;-3
Nếu a- 10 = -15 => a=-5 => b-1 = 1 => b= 2 đối chiếu với (*) => loại
a - 10 = -1 => a=9 => b-1 = 15 => b=16 loại
a-10 = -5 => a=5 => b-1= 3 => b = 4 thoả mãn (*) => số 54 thoả mãn
a-10 = -3 => a=7 => b-1= 5 => b = 6 thoả mãn (*) => số 76 thoả mãn
Vậy có 2 số thoả mãn đề bài là 54; 76
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Gọi số đó là ab
Ta có: a+b<6 ab=>a+b<60a+6b
=>-(59+5b)<0 =>59+5b>0 (nhân cả hai vế với -1 thì bđt đổi chiều) (1)
lại có: a.b+25=ba
=>a.b+25=10b+a
=>a.b-a-10b-25=0
=>a(b-1)-10(b-1)+15=0
=>(b-1)(a-10)=-15
=>b-1 và a-10 thuộc Ư(-15)={+-1;+-3;+5;+15}
mà a là chữ số nên a bé hơn hoặc bằng 9
=> a-10<0 => a-10={-1,-3,-5,-15}
dễ thấy b là chữ số hàng đơn vị nên không thể là số âm
=> b lớn hơn hoặc bằng 0 vậy b=0 thì b-1=-1
b=4 thì b-1=3
b=6 thì b-1=5
b không thể bằng 16 vì đây là chữ số
==>b-1={-1;3;5} và a-10={-1;-3;-5;-15}
nếu a-10=-3 thì b-1=5 => a=7; b=6 so với 1 thỏa mãn đk
nếu a-10=-5 thì b-1=3=> a=5;b=4 so với 1 thỏa mãn
=> vây a=7 b=6 hoặc a=5 b=4 nhưng khi thử lại thì chỉ còn một trường hơp là a=5 b=4 vậy số đó là 54
abcd + a + b + c + d = 2021
=>1000a +100b +10c +d +a +b +c +d = 2021
=>1001a + 101b + 11c + 2d = 2021
=>a = 2, b = 0, c=1, d=4
Vậy số đó là 2014.
Bài 1:
Gọi 2 số là a,b (\(a,b\inℤ\))
Ta có: a+b=51(*)
Mà 2/5a=1/6b
=> a=5/12b
Thay vào (*) ta có: 17/12b=51
=>b=36
Bài 1 :
Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)
Tổng hai số bằng : \(x+y=51\left(1\right)\)
Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai
\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)
\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)
\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)
\(< =>612-12y=5y\)\(< =>612=17y\)
\(< =>y=\frac{612}{17}=36\left(3\right)\)
Thay 3 vào 1 ta được : \(x+y=51\)
\(< =>x+36=51< =>x=51-36=15\)
Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36
Gọi số cần tìm là : \(\overline{ab}\left(a\ne0\right)\)
Theo đề ra ta có:
\(\overline{ab}\left(a+b\right)=a^3+b^3\)
\(\Leftrightarrow10a+b=a^2-ab+b^2=\left(a+b\right)^2-3ab\)
\(\Leftrightarrow9a+3ab=\left(a+b\right)^2-\left(a+b\right)\)
\(\Leftrightarrow3a\left(a+b\right)=\left(a+b\right)\left(a+b-1\right)\)
Vì (a+b)và (a+b−1) là hai số nguyên tố cùng nhau cho nên:
TH1: \(\hept{\begin{cases}a+b=3a\\a+b-1=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=8\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+b-1=3a\\a+b=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=7\end{cases}}\)
Vậy số cần tìm là 48 hoặc 37