Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-y2=y+1
<=> 4x2-4y2=4y+4
<=>4x2-(4y2+4y+1)=3
<=>(2x-2y-1)(2x+2y+1)=3=1.3 (do 2x+2y+1>2x-2y-1>0)
<=>2x-2y-1=1 và 2x+2y+1=3
<=>x-y=1 và x+y=1
=>x=1 và y=0(thỏa mãn)
Vậy x=1 và y=0
ta có : 2x+1 là số chia hết cho 2 dư 1
=> y2 chia hết cho 2 dư 1
=>y=2k+1 =>y2=4k2+1
khi đó : 2x+1=4k2+1
=>2x=4k2
tại 2x=4k2 và y2=4k2+1 thì thỏa mãn pt đã cho
vậy đáp số : \(\hept{\begin{cases}2^x=4k^2\\y^2=4k^2+1\end{cases}}\)với k là số nguyên tùy ý
\(\left(x^2+4z\right)^2=17\left(x^4+z^2\right)\)
\(x^4+8x^2z+16z^2=17x^4+17z^2\)
\(t^4-2t^2z+z^2=\left(t^2-z\right)^2=0\)
Nghiệm duy nhất: \(t^2=z\Rightarrow t^2=y^2+7\Rightarrow\hept{\begin{cases}t=4\Rightarrow x=2\\y=3\end{cases}}\)KL (x,y)=(2,3)
Làm hơi tắt nhé
- Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)
- Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)
- Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)
- \(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
- \(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
- Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
<=> x2 = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)
y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại
vậy các nghiệm (x;y) = (0;5); (1;8)
Bình phương lên ta được:
\(x+\sqrt{x+\sqrt{x}}=y^2\Rightarrow\sqrt{x+\sqrt{x}}=y^2-x=k\left(k\in N\right)\)
Lại bình phương tiếp ta được:
\(x+\sqrt{x}=k^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=k^2\left(1\right)\)
Mà \(k\) là STN nên \(\sqrt{x}\) là số tự nhiên. Do đó, từ \(\left(1\right)\) suy ra \(k^2\) là SCP và là tích \(2\) STN liên tiếp nên số nhỏ bằng \(0\), tức là \(\sqrt{x}=0\Rightarrow x=0\Rightarrow y=0\)
Vậy nghiệm của phương trình là \(\left(x,y\right)=\left(0;0\right)\)