K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

ta có : 2x+1 là số chia hết cho 2 dư 1

=> y2 chia  hết cho 2 dư 1

=>y=2k+1 =>y2=4k2+1

khi đó : 2x+1=4k2+1

=>2x=4k2

tại 2x=4k2 và y2=4k2+1 thì thỏa mãn pt đã cho

vậy đáp số : \(\hept{\begin{cases}2^x=4k^2\\y^2=4k^2+1\end{cases}}\)với k là số nguyên tùy ý

16 tháng 1 2017

\(2x^2-xy-y^2-8=0\Leftrightarrow\left(x^2-xy\right)+\left(x^2-y^2\right)=8\)

\(\Leftrightarrow x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=8\)

\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=8\)

Ta có bảng sau:

x+y-8-4-2-11248
2x+y-1-2-4-88421
x72-2-772-2-7
y-15-606-60615

Bạn tự kết luận 

17 tháng 1 2017

thanks nhiều ạ

23 tháng 4 2020

x2-y2=y+1

<=>  4x2-4y2=4y+4

<=>4x2-(4y2+4y+1)=3

<=>(2x-2y-1)(2x+2y+1)=3=1.3  (do 2x+2y+1>2x-2y-1>0)

<=>2x-2y-1=1 và 2x+2y+1=3

<=>x-y=1 và x+y=1

=>x=1 và y=0(thỏa mãn)

Vậy x=1 và y=0

Tìm nghiệm tự nhiên của phương trình x2+2x+y2+10


 

15 tháng 12 2021

\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)

15 tháng 12 2021

undefined

22 tháng 10 2019

Làm hơi tắt nhé

  • Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)
  • Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)
  • Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)
  • \(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
  • \(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
  • Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
22 tháng 10 2019

<=> x2  = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)

y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại

vậy các nghiệm (x;y) = (0;5); (1;8)

8 tháng 4 2021

Thay x = -1 vào phương trình (2x - m)(x + 1) - \(2x^2\) - mx + m - 4 = 0 ta có:

(2.(-1) - m)(-1 + 1) - \(2.\left(-1\right)^2\) - m.(-1) + m - 4=0

⇔ (-2 - m).0 - 2 + m + m - 4 = 0

⇔ 2m - 6 = 0

⇔ 2( m - 3) = 0

⇔ m - 3 = 0

⇔ m = 3

Vậy m = 3

8 tháng 4 2021

(2x-m)(x+1)-2x2-mx+m-4=0

\(\Leftrightarrow\)2x2+2x-mx-m-2x2-mx+m-4=0

\(\Leftrightarrow\)-2mx-4=0

\(\Leftrightarrow\)-2mx=4

Thay x=-1 vào phương trình, ta có:

-2m(-1)=4

\(\Leftrightarrow\)2m=4

\(\Leftrightarrow\)m=2