Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3x^2+14y^2+13xy=330
(=) x2 +14/3y2+13/3xy=110
(=) x2+2.13/6xy+169/36y2-169/36y2+14/3y2=110
=> (x+13/6y)2 -1/36y^2=110
(=) (x+13/6y-1/6y)(x+13/6y+1/6y)=110
=)(x+2y)(x+7/3y)=2.5.11=10.11=11.10=22.5=5.22=55.2=2.55
=> x=4;y=3
\(\Leftrightarrow3x^2+6xy+14y^2+7xy=330\Leftrightarrow3x\left(x+2y\right)+7y\left(x+2y\right)=330\)
\(\Leftrightarrow\left(x+2y\right)\left(3x+7y\right)=330\)
\(\Leftrightarrow\left(x+2y\right)\left(3x+7y\right)=330.1=165.2=10.33=5.66=15.22\)
x,y nguyên dương => 3x+7y > x+3y>2
TH1: \(\left\{{}\begin{matrix}x+2y=10\\3x+7y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\left(n\right)\)
TH2: \(\left\{{}\begin{matrix}x+2y=5\\3x+7y=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-97\\y=51\end{matrix}\right.\left(l\right)\)
TH3:\(\left\{{}\begin{matrix}x+2y=15\\3x+7y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=61\\y=-23\end{matrix}\right.\) (l)
\(\Rightarrow x=4;y=3\)
Ta có : 3x^2+14y^2+13xy=330
(=) x2 +14/3y2+13/3xy=110
(=) x2+2.13/6xy+169/36y2-169/36y2+14/3y2=110
=> (x+13/6y)2 -1/36y^2=110
(=) (x+13/6y-1/6y)(x+13/6y+1/6y)=110
=)(x+2y)(x+7/3y)=2.5.11=10.11=11.10=22.5=5.22=55.2=2.55
=> x=4;y=3
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)
\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)
\(\Rightarrow y^2\le\dfrac{16}{3}\)
\(\Rightarrow y^2=\left\{1;4\right\}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)
- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;2\right)\)
⇔3x2+6xy+14y2+7xy=330⇔3x(x+2y)+7y(x+2y)=330⇔3x2+6xy+14y2+7xy=330⇔3x(x+2y)+7y(x+2y)=330
⇔(x+2y)(3x+7y)=330⇔(x+2y)(3x+7y)=330
⇔(x+2y)(3x+7y)=330.1=165.2=10.33=5.66=15.22⇔(x+2y)(3x+7y)=330.1=165.2=10.33=5.66=15.22
x,y nguyên dương => 3x+7y > x+3y>2
TH1: {x+2y=103x+7y=33⇔{x=4y=3(n){x+2y=103x+7y=33⇔{x=4y=3(n)
TH2: {x+2y=53x+7y=66⇔{x=−97y=51(l){x+2y=53x+7y=66⇔{x=−97y=51(l)
TH3:{x+2y=153x+7y=22⇔{x=61y=−23{x+2y=153x+7y=22⇔{x=61y=−23 (l)
⇒x=4;y=3
Dc chưa bạn