Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao ra x=y đc nhỉ
pt đã cho có dạng \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y
\(x^2+xy+y^2=x^2y^2.\)
+ x =0; y =0 là nghiệm
+ x y khác 0
\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)
=> x =y
=> 3x2 =x4 => x2 = 3 loại
Vậy x = y =0 là nghiệm duy nhất
Ta có x2 - y2 = 6y + 44
<=> x2 - (y + 3)2 = 35
<=> (x - y - 3)(x + y + 3) = 5×7
<=> \(\hept{\begin{cases}x-y-3=7\\3+x+y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=5\\3+x+y=7\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=1\\3+x+y=15\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=15\\3+x+y=1\end{cases}}\)
Vậy (x; y) = (8; 4)
Ta có : \(x^2+y^2+xy=x^2y^2\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Mà \(x^2y^2\le xy\left(xy+1\right)\le\left(xy+1\right)^2\)
Không tồn tại 1 số chính phương giữa 2 số chính phương để xy(xy+1) là 1 số chính phương thì nó phải bằng 1 trong hai số đó .
\(\Rightarrow xy\left(xy+1\right)=0\)
\(\Rightarrow\left(x,y\right)=\left(0,0\right);\left(1,-1\right);\left(-1,1\right)\)
\(x^2+y^2+xy=x^2y^2\)
<=>x^2+y^2-x-y-xy=0
<=>2x^2+2y^2-2x-2y-2xy=0
<=>(x-y)^2+(x-1)^2+(y-1)^2=2
mà 2=0+1+1=1+0+1=1+1+0
(phần này tách số 2 ra thành tổng 3 số chính phương)
Xét trường hợp 1:
(x-y)^2=0
(x-1)^2=1
(y-1)^2=1
Giải ra ta được x=2, y=2
Tương tự xét các trường hợp còn lại.
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1)
Thân_mưa ^^
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)