K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

sữa chỗ sai

she doesn't go to the cinema withus last Sunday

         A                  B                 C  D

30 tháng 9 2016

Giữa câu hỏi và caau trả lời có một sự liên quan không hề nhẹbatngo

14 tháng 7 2016

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

31 tháng 10 2015

A=(n2-n) - (3n-3)= (n-1)(n-3) là số nguyên tố thì

n-1=1;-1 và n-3 là số nguyên tố => n= 2;0  khi đó n-3=-1;3 là số nguyên tố => n=0 là thỏa mãn

hoặc n-3=1;-1 và n-1 là số nguyên tố => n=4;2 khi đó n-1=3;1 là số nguyên tố => n=4 là thỏa mãn

Vậy n= 0 hoặc n=4

 

10 tháng 8 2017

Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)

=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7

Đến đây liệt kê ước của - 7 rồi xét các TH !!!

23 tháng 8 2019

ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3

=> n^3-n+2 chia 3 dư 2 

mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm

1 tháng 9 2019

Ta có;                                    \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)

Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.

Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.

SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!

23 tháng 10 2021

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)