Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=9999.....98000..001
=10.....0-199..9(n chữ số 9,2n+1 chữ số 0)
= (10..0)^2-(10..0-9...9)(10..0+9..9)
(n chữ số 0,n-1 chữ số 9)
= (10..0)^2-[(10..0)^2-(9..9)^2]
=(9..9)^2(đpcm)
Vậy A LÀ MỘT SỐ CHÍNH PHƯƠNG
Đặt a^2=n^2+5 ta có:(a\(\in\)N)
<=> a^2-n^2=5
<=> (a-n)(a+n)=5
=>5\(⋮\)a-n ; 5\(⋮\)a+n
Mà n,a\(\in\)N =>a-n\(\in\)Ư(5);a+n\(\in\)Ư(5)
Mặt khác a+n\(\ge\)0,a+n\(\ge\)a-n(vì n,a\(\in\)N )
Ư(5)={1;-1;5;-5} nên ta xét TH sau:
TH:\(\left\{{}\begin{matrix}a-n=1\\a+n=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+n+a-n=5+1\\a+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a=6\\a+n=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\n=2\end{matrix}\right.\)(thỏa mãn)
Vậy n=2
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Ta có:
a+b+c+8
=111...1(2n c/s 1)+111...1(n+1 c/s1)+666...6(n chữ số 6)+8
=111...1(n-1 c/s 1)2888...8(n c/s 8)+8
=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
Ta thấy:
362(1c/s3)=1296(1 c/s 1;0 c/s 8)
3362(2c/s 3)=112896(2 c/s 1;1c/s 8)
33362(3c/s 3)=11128896(3 c/s 1;2 c/s 8)
=>333...362(n-1 c/s 3)=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
=>a+b+c+8 là số chính phương(ĐPCM)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)