Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)
Sửa Đề thành: 3n + 2n + 3n+2 - 2n+4
= 3n + 2n + 3n.32 - 2n.24
= 3n.( 1 + 32 ) + 2n.( 1 - 24 )
= 3n.10 + 2n.(-15)
= 3n-1.3.10 - 2n-1 .2.15
= 30 . ( 3n-1 - 2n-1 ) chia hết cho 30 với n nguyên dương
=> 3n + 2n + 3n+2 - 2n+4 chia hết cho 30 với n nguyên dương
(n+5)(n+6):6n=\(\frac{1}{6}\)(n+11+\(\frac{30}{n}\))
để chia hết thì
n là ước của 30 và
n+11+\(\frac{30}{n}\) chia hết cho 6
vậy
n = 1, 3 ,10 , 30
k mk nha!!
bạn kia lm` chả hỉu j sất